

JHARKHAND UNIVERSITY OF TECHNOLOGY

Diploma 3rd Semester Sample Paper (DIPLOMA WALLAH)

MECHANICS OF MATERIALS (MEC 301)

More Model Sets & Study Materials available here DiplomaWallah.in

Time: 3 Hours

Full Marks: 70

SET: 3

INSTRUCTIONS:

1. Question No. 1 is Compulsory.
2. Answer any **FOUR** questions from the remaining (Q.2 to Q.7).
3. Use the provided figures for numerical problems.

Q.1. Multiple Choice Questions

[2 × 7 = 14]

(i) The point of contraflexure occurs where:

(a) Shear force is zero	(b) Bending moment changes sign
(c) Bending moment is maximum	(d) Deflection is maximum

(ii) The Hoop Stress in a thin cylindrical shell subjected to internal pressure 'p' is:

(a) $pd/2t$	(b) $pd/4t$
(c) pd/t	(d) $pd/8t$

(iii) The variation of shear stress in a circular beam section is:

(a) Linear	(b) Parabolic
(c) Hyperbolic	(d) Uniform

(iv) Rankine's formula is applicable for:

(a) Long columns only	(b) Short columns only
(c) Both long and short columns	(d) None of these

(v) If a material has identical properties in all directions, it is said to be:

(a) Homogeneous	(b) Isotropic
(c) Elastic	(d) Plastic

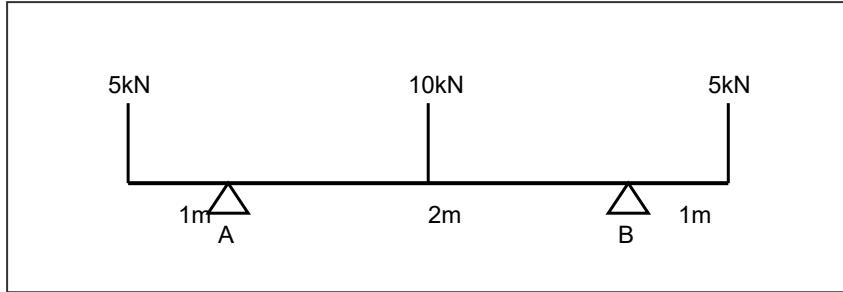
(vi) Thermal stress depends on:

(a) Change in temperature	(b) Coefficient of expansion (α)
(c) Modulus of Elasticity (E)	(d) All of the above

(vii) The value of Poisson's ratio for steel varies between:

(a) 0.25 to 0.33	(b) 0.4 to 0.5
(c) 0.0 to 0.1	(d) 1.0 to 2.0

SECTION B (Long Answer Type)


Q.2. (a) [Theory] Derive the relationship among **Young's Modulus (E)**, **Modulus of Rigidity (G)**, and **Bulk Modulus (K)**:

$$E = 9KG / (3K+G).$$

[7]

Q.2. (b) [Theory] Explain **Resilience**, **Proof Resilience**, and **Modulus of Resilience**. Illustrate the concept using the area under the stress-strain curve. [7]

Q.3. (a) [Numerical] A beam is simply supported at A and B with overhangs on both sides. Draw the **SFD** and **BMD** for the loading shown below. [7]

Q.3. (b) [Theory] State and explain the **Theorem of Parallel Axes** and **Theorem of Perpendicular Axes** for Moment of Inertia. [7]

Q.4. (a) [Numerical] A rectangular beam is to support a UDL of 10 kN/m over a span of 4 m. If the depth is twice the width ($d=2b$) and bending stress is not to exceed 8 MPa, find the **Dimensions of the cross-section**. [7]

Q.4. (b) [Theory] Explain the distribution of Bending Stress across the depth of a beam. Prove that the **Neutral Axis coincides with the Centroid** of the cross-section. [7]

Q.5. (a) [Numerical] A solid shaft is required to transmit a torque of 20 kNm. Find the necessary **diameter of the shaft** if the allowable shear stress is 60 MPa and the allowable twist is 1° for every 20 diameters length of the shaft. (Take $G = 80$ GPa). [7]

Q.5. (b) [Theory] Explain **Rankine's Formula** for columns. How does it differ from Euler's formula? Define Crushing Load. [7]

Q.6. (a) [Theory] Derive the expression for **Circumferential (Hoop) Stress** and **Longitudinal Stress** in a thin cylindrical shell subjected to internal fluid pressure. [7]

Q.6. (b) [Numerical] A thin cylindrical shell of 1m internal diameter and 10 mm thickness is subjected to an internal pressure of 2 N/mm². Calculate the **Hoop Stress** and **Longitudinal Stress**. [7]

Q.7. Write Short Notes on (Any FOUR): $[3.5 \times 4 = 14]$

- a. Strain Energy due to Torsion
- b. Equivalent Length of Column
- c. Torsional Rigidity
- d. Principal Planes (Brief Concept)
- e. Ductility vs Brittleness

Diplomawallah.in