

JHARKHAND UNIVERSITY OF TECHNOLOGY

Diploma 3rd Semester Examination

MECHANICS OF MATERIALS (MEC 301)

More Model Sets & Study Materials available here **DiplomaWallah.in**

Time: 3 Hours

Full Marks: 70

SET: 1

INSTRUCTIONS:

1. Question No. 1 is Compulsory.
2. Answer any **FOUR** questions from the remaining (Q.2 to Q.7).
3. Figures in the margin indicate full marks.

Q.1. Multiple Choice Questions

$$[2 \times 7 = 14]$$

(i) The ratio of lateral strain to linear strain is known as:

(ii) The bending stress in a beam is maximum at the:

(a) Neutral Axis (c) Centroid	(b) Extreme Fibers (d) Junction of web and flange
----------------------------------	--

(iii) For a cantilever beam carrying a UDL, the Shear Force diagram is a:

(a) Rectangle (b) Triangle
(c) Parabola (d) Cubic curve

(iv) Polar Moment of Inertia (J) for a solid circular shaft of diameter D is:

(a) $\pi D^4/32$ (b) $\pi D^4/64$
(c) $\pi D^3/16$ (d) $\pi D^3/32$

(v) A column that fails primarily due to buckling is called a:

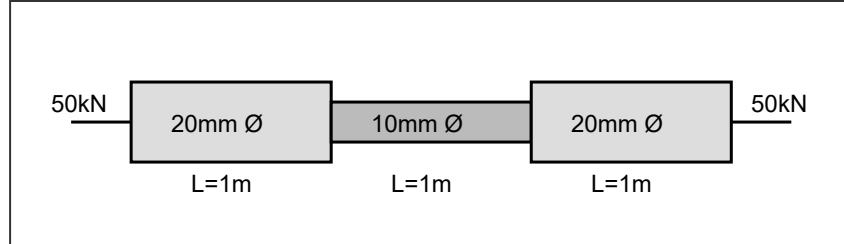
- (a) Short column
- (b) Long column
- (c) Medium column
- (d) Strut

(vi) The unit of Strain is:

(a) N/mm² (b) N-m
 (c) Dimensionless (d) kg/m³

(vii) The energy stored in a body within the elastic limit is called:

- (a) Resilience
- (b) Proof Resilience
- (c) Toughness
- (d) Hardness


SECTION B (Long Answer Type)

Q.2. (a) [Theory] Draw the **Stress-Strain Diagram for Mild Steel** under tension. Explain all significant points (Proportional Limit, Yield Point, Ultimate Stress, Breaking Point).

[7]

Q.2. (b) [Numerical] Find the total elongation of the **Stepped Bar** shown below. Take $E = 200 \text{ GPa}$.

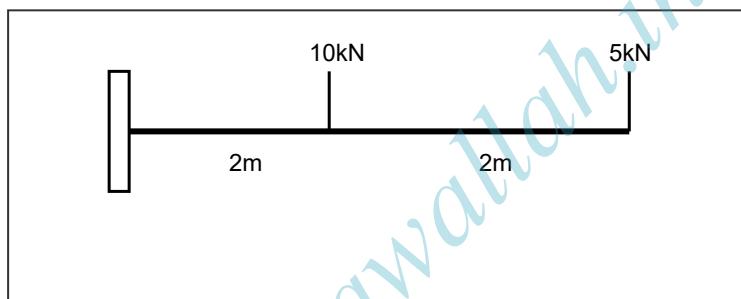
[7]

Q.3. (a) [Theory] Derive the relationship between **Modulus of Elasticity (E)** and **Modulus of Rigidity (G)**:

$$E = 2G(1 + \mu).$$

[7]

Q.3. (b) [Numerical] A steel rod of 20 mm diameter and 2 meters length is subjected to an axial pull of 50 kN. Find the **Stress**, **Strain**, and **Elongation**. Take $E = 2 \times 10^5 \text{ N/mm}^2$.


[7]

Q.4. (a) [Theory] State the assumptions in the **Theory of Simple Bending**. Derive the Bending Equation: $M/I = \sigma/y = E/R$.

[7]

Q.4. (b) [Numerical] Draw the **SFD** and **BMD** for the Cantilever Beam shown below.

[7]

Q.5. (a) [Theory] Derive the **Torsion Equation** for a circular shaft: $T/J = \tau/R = G\theta/L$. State the assumptions made.

[7]

Q.5. (b) [Numerical] Compare the strength of a **Solid Shaft** and a **Hollow Shaft** of the same material and same weight. Show that the hollow shaft is stronger.

[7]

Q.6. (a) [Theory] What are the assumptions made in **Euler's Column Theory**? Discuss the limitations of Euler's formula for short columns.

[7]

Q.6. (b) [Theory/Diagram] Define **Shear Stress**. Sketch the Shear Stress Distribution diagram for a (i) Rectangular Section, (ii) Circular Section, and (iii) I-Section.

[7]

Q.7. Write Short Notes on (Any FOUR):

$[3.5 \times 4 = 14]$

- a. Point of Contraflexure
- b. Section Modulus (Z)
- c. Factor of Safety
- d. Hooke's Law

Made With ❤ by Sangam (**Diploma Wallah**)

Diplomawallah.in