

JHARKHAND UNIVERSITY OF TECHNOLOGY

Diploma 3rd Semester Sample Paper (DIPLOMA WALLAH)

FLUID POWER ENGINEERING (MEC 304)

More Model Sets & Study Materials available here DiplomaWallah.in

Time: 3 Hours

Full Marks: 70

SET: 3

INSTRUCTIONS:

1. Question No. 1 is Compulsory.
2. Answer any **FOUR** questions from the remaining (Q.2 to Q.7).
3. Use the provided figures for numerical problems.

Q.1. Multiple Choice Questions

[2 × 7 = 14]

(i) The ratio of inertia force to viscous force is called:

(a) Reynolds Number	(b) Froude Number
(c) Weber Number	(d) Euler Number

(ii) Discharge (Q) through an orifice is given by:

(a) $C_d \times a \times \sqrt{2gh}$	(b) $C_d \times a \times 2gh$
(c) $a \times \sqrt{2gh}$	(d) None

(iii) In a Pelton wheel, the bucket shape is:

(a) Flat	(b) Single hemispherical cup
(c) Double hemispherical cup	(d) Elliptical

(iv) NPSH stands for:

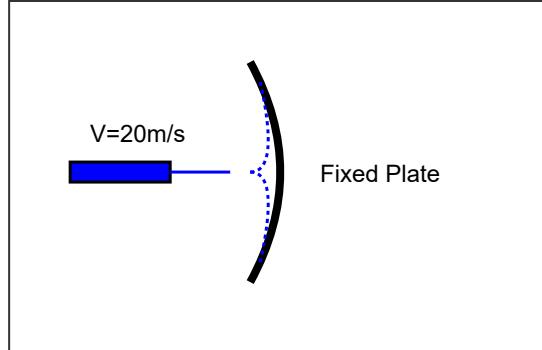
(a) Net Positive Suction Head	(b) Net Pressure Suction Head
(c) Normal Pump Suction Head	(d) Nominal Positive Suction Head

(v) A Hydraulic Intensifier is used to:

(a) Increase discharge	(b) Increase pressure intensity
(c) Store energy	(d) Measure pressure

(vi) Loss of head due to friction in pipes is given by:

(a) Chezy's Formula	(b) Darcy-Weisbach Formula
(c) Manning's Formula	(d) All of these


(vii) Mercury is used in manometers because:

(a) Low vapor pressure & High density	(b) High vapor pressure
(c) Low density	(d) Transparent

SECTION B (Long Answer Type)

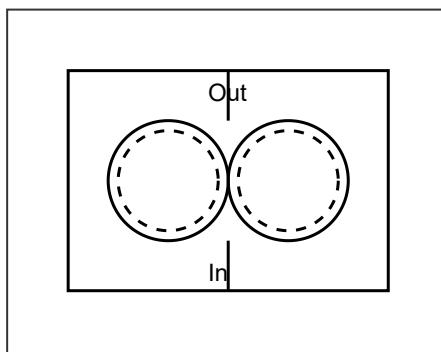
Q.2. (a) [Theory] Derive the **Darcy-Weisbach Equation** for loss of head due to friction in pipes:
 $hf = 4fLv^2 / (2gd)$. [7]

Q.2. (b) [Numerical] Find the force exerted by a jet of water of diameter 50mm striking a Stationary Symmetrical Curved Plate at the center with velocity 20 m/s. [7]

Q.3. (a) [Theory] Explain the construction and working of a **Hydraulic Accumulator**. What is its capacity? [7]

Q.3. (b) [Theory] Explain the working of a **Hydraulic Lift**. Differentiate between Direct Acting and Suspended Hydraulic Lifts. [7]

Q.4. (a) [Theory] Explain the **Main Characteristic Curves** of a Hydraulic Turbine (Unit speed, Unit discharge, Unit power). [7]


Q.4. (b) [Theory] Define **Manometric Efficiency**, **Mechanical Efficiency**, and **Overall Efficiency** of a Centrifugal Pump. [7]

Q.5. (a) [Theory] What are **Air Vessels**? Explain their function in a reciprocating pump (Smoothing flow, saving work). [7]

Q.5. (b) [Numerical] Calculate the **Slip** and **Percentage Slip** of a reciprocating pump if Theoretical Discharge is $0.02 \text{ m}^3/\text{s}$ and Actual Discharge is $0.018 \text{ m}^3/\text{s}$. [7]

Q.6. (a) [Theory] Explain the different **Types of Fluid Flow**: (i) Steady & Unsteady, (ii) Uniform & Non-uniform, (iii) Laminar & Turbulent. [7]

Q.6. (b) [Theory/Diagram] Explain the principle of operation of a **Gear Pump** (Rotary Pump) with a sketch. Where is it used? [7]

Q.7. Write Short Notes on (Any FOUR): $3.5 \times 4 = 14$

- a. Reynolds Number (Re)
- b. Orifice Meter

- c. Hydraulic Crane
- d. Water Hammer
- e. Submersible Pump

Diploma Wallah: Solution Key

MCQ: (i) a, (ii) a, (iii) c, (iv) a, (v) b, (vi) b, (vii) a.

Q2(b) Hint: For semi-circular curved plate, Force = $2\rho aV^2$. $F = 2 * 1000 * (\pi/4 * 0.05^2) * 20^2$. $F = 1570$ N.

Q5(b) Hint: Slip = $Q_{th} - Q_{act}$ = 0.002 m³/s. % Slip = $(0.002 / 0.02) * 100 = 10\%$.

Made With ❤ by Sangam ([Diploma Wallah](#))