

JHARKHAND UNIVERSITY OF TECHNOLOGY

Diploma 3rd Semester Sample Paper (DIPLOMA WALLAH)

FLUID POWER ENGINEERING (MEC 304)

More Model Sets & Study Materials available here DiplomaWallah.in

Time: 3 Hours

Full Marks: 70

SET: 2

INSTRUCTIONS:

1. Question No. 1 is Compulsory.
2. Answer any **FOUR** questions from the remaining (Q.2 to Q.7).
3. Use the provided figures for numerical problems.

Q.1. Multiple Choice Questions

$$[2 \times 7 = 14]$$

(i) Atmospheric pressure at sea level is approximately:

(ii) The coefficient of discharge (C_d) for a Venturimeter is around:

(a) 0.6 to 0.7 (b) 0.95 to 0.98
(c) 1.0 to 1.2 (d) 0.5 to 0.6

(iii) In a Centrifugal pump, the liquid enters the impeller:

- (a) At the center (Eye)
- (b) At the top
- (c) At the bottom
- (d) Tangentially

(iv) Kaplan Turbine is a:

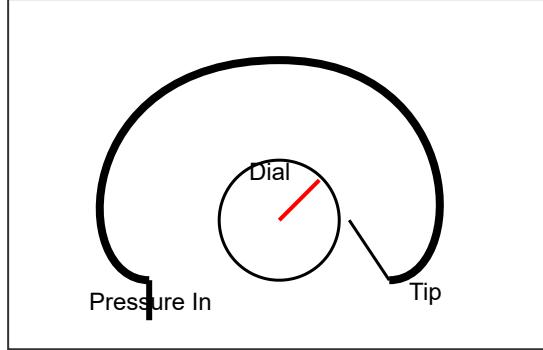
(a) Tangential flow turbine (b) Radial flow turbine
(c) Axial flow turbine (d) Mixed flow turbine

(v) An Air Vessel is used in a Reciprocating pump to:

(a) Increase delivery head	(b) Obtain continuous supply
(c) Reduce suction head	(d) Increase efficiency

(vi) Continuity Equation ($A_1V_1 = A_2V_2$) represents conservation of:

(vii) The unit of Surface Tension is:


(a) N/m^2 (b) N/m
 (c) $\text{N}\cdot\text{m}$ (d) kg/m^3

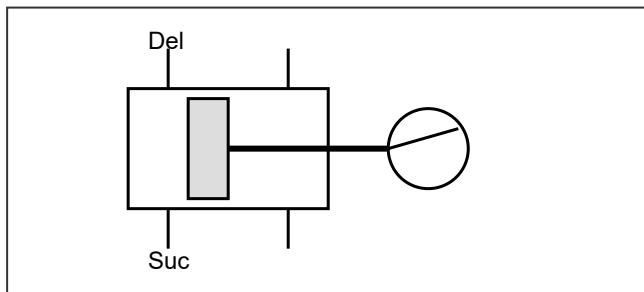
SECTION B (Long Answer Type)

Q.2. (a) [Theory] Derive the **Continuity Equation** for 3D flow in Cartesian coordinates. Reduce it for one-dimensional steady incompressible flow ($A_1V_1 = A_2V_2$). [7]

Q.2. (b) [Numerical] A pipe of diameter 300 mm branches into two pipes of diameters 200 mm and 150 mm. If the average velocity in the 300 mm pipe is 2.5 m/s, find the **Discharge in the main pipe**

Q.3. (a) [Theory/Diagram] Explain the working of **Bourdon's Tube Pressure Gauge** with a neat sketch. What is it used for? [7]

Q.3. (b) [Theory] What is a **Piezometer**? What are its limitations compared to U-tube Manometers? [7]


Q.4. (a) [Theory] Explain the construction and working of a **Francis Turbine**. Draw the velocity triangles at inlet and outlet. [7]

Q.4. (b) [Theory] Explain the function of a **Draft Tube**. Why is it used in Reaction Turbines? List two types of draft tubes. [7]

Q.5. (a) [Theory] Differentiate between **Centrifugal Pump** and **Reciprocating Pump** (at least 7 points). [7]

Q.5. (b) [Theory] Derive the expression for the **Work Done** by the impeller of a centrifugal pump on water per second per unit weight. [7]

Q.6. (a) [Theory/Diagram] Explain the working of a **Double Acting Reciprocating Pump** with a neat diagram. Define Slip and Negative Slip. [7]

Q.6. (b) [Theory] What is an **Indicator Diagram**? Draw the theoretical and actual indicator diagrams for a reciprocating pump showing the effect of acceleration head. [7]

Q.7. Write Short Notes on (Any FOUR):

[3.5 × 4 = 14]

- a. Hydraulic Gradient Line (HGL)
- b. Pitot Tube
- c. Governing of Turbines

- d. Hydraulic Ram
- e. Gauge Pressure vs Absolute Pressure

Diploma Wallah: Solution Key

MCQ: (i) d, (ii) b, (iii) a, (iv) c, (v) b, (vi) a, (vii) b.

Q2(b) Hint: $Q_{\text{main}} = A_1 V_1$. $Q_{\text{branch}} = Q_{\text{main}} / 2$. Then use $Q_{\text{branch}} = A_3 V_3$ to find V_3 .

Q5(b) Formula: Work Done = $(1/g) * [V_w2 * u_2]$.

Made With ❤️ by Sangam (**Diploma Wallah**)