

JHARKHAND UNIVERSITY OF TECHNOLOGY
DIPLOMA 3RD SEMESTER EXAMINATION
LOGIC DESIGN USING VERILOG (ECE
302)

MORE MODEL SETS & STUDY MATERIALS AVAILABLE HERE
DIPLOMAWALLAH.IN

Time: 3 Hours

Full Marks: 70

SET: 2

INSTRUCTIONS:

1. Question No. 1 is Compulsory.
2. Answer any **FOUR** questions from the remaining.
3. Diagrams provided are for reference only. Draw them clearly in exam.

Q.1. MULTIPLE CHOICE QUESTIONS

[2 × 7 = 14]

(i) Which logic gate is known as a Universal Gate?

(a) AND	(b) OR
(c) NAND	(d) XOR

(ii) In Verilog, which symbol represents Bitwise AND?

(a) &&	(b) &
(c) ~&	(d) !

(iii) How many Flip-Flops are needed for a Mod-16 counter?

(a) 3	(b) 4
(c) 5	(d) 16

(iv) A Ring Counter with 4 Flip-Flops has how many states?

(a) 4	(b) 8
(c) 16	(d) 2

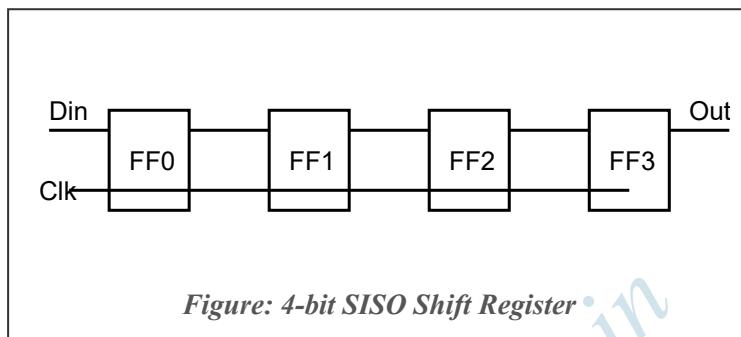
(v) PLA has:

(a) Fixed AND, Programmable OR	(b) Programmable AND, Fixed OR
(c) Programmable AND, Programmable OR	(d) Fixed AND, Fixed OR

(vi) The syntax `assign Y = A & B;` belongs to:

(a) Behavioral Modeling
(c) Structural Modeling

(b) Dataflow Modeling
(d) Gate Level


(vii) SIPO stands for:

(a) Serial In Parallel Out
(c) Serial Input Parallel Output

(b) Series In Parallel Out
(d) None

SECTION B (Long Answer Type)

Q.2. (a) Explain SISO (Serial In Serial Out) Shift Register using D Flip-Flops. Draw its logic diagram and timing diagram for data '1101'. [7]

Q.2. (b) Write the Verilog code for a 1:4 Demultiplexer using Dataflow Modeling.

[7]

```
module demux1to4 (input I, input [1:0] S, output Y0, Y1, Y2, Y3);
  assign Y0 = I & ~S[1] & ~S[0];
  assign Y1 = I & ~S[1] & S[0];
  assign Y2 = I & S[1] & ~S[0];
  assign Y3 = I & S[1] & S[0];
endmodule
```

Q.3. (a) Explain JK Flip Flop. Convert SR Flip Flop to JK Flip Flop with necessary truth table and logic diagram.

[7]

Q.3. (b) Write a Verilog code for BCD to 7-Segment Decoder using Behavioral Modeling (Case Statement).

[7]

```
// Hint:
case (bcd)
  4'b0000 : seg = 7'b0000001; // 0
  4'b0001 : seg = 7'b1001111; // 1
  // ... continue for 0-9
endcase
```

Q.4. (a) Explain Synchronous Counter. Design a 3-bit Synchronous Up Counter using T Flip-Flops.

[7]

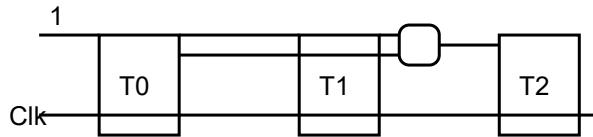


Figure: 3-bit Synchronous Counter Logic

Q.4. (b) Explain the difference between **Mealy Machine** and **Moore Machine** with state diagrams. [7]

Q.5. (a) Explain the architecture of **CPLD (Complex Programmable Logic Device)**. How is it different from FPGA? [7]

Q.5. (b) Explain **Flash Type ADC** (Parallel Comparator ADC). Why is it the fastest ADC? Draw its circuit for 2-bit conversion. [7]

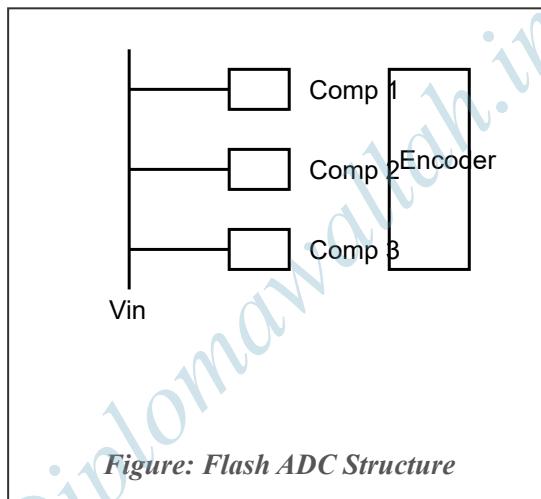


Figure: Flash ADC Structure

Q.6. Implement the following Boolean functions using **PLA (Programmable Logic Array)**: [14]

$$F1(A, B, C) = \Sigma m(0, 1, 2, 4)$$

$$F2(A, B, C) = \Sigma m(3, 5, 6, 7)$$

(Draw the PLA table and logic diagram showing connections in AND plane and OR plane).

Q.7. WRITE SHORT NOTES ON (ANY FOUR):

[3.5 × 4 = 14]

- a. Verilog Data Types (Wire vs Reg)
- b. Blocking vs Non-Blocking Assignment
- c. Ripple Counter vs Synchronous Counter
- d. Successive Approximation ADC
- e. User Defined Primitives (UDP)

DIPLOMA WALLAH: SOLUTION KEY

MCQ: (i) c, (ii) b, (iii) b, (iv) a, (v) c, (vi) b, (vii) a.

Q2(b) Hint: Use 'assign' statement with logic equations for Dataflow modeling.

Q6 Hint: Minimize expressions using K-Map first, then implement on PLA grid.

Made With ❤️ by Sangam ([Diploma Wallah](#))

Diplomawallah.in