

JHARKHAND UNIVERSITY OF TECHNOLOGY

Diploma 3rd Semester Examination (DIPLOMA WALLAH)

COMMUNICATION SYSTEMS (ECE 303)

More Model Sets & Study Materials available here DiplomaWallah.in

Time: 3 Hours

Full Marks: 70

SET: 3

INSTRUCTIONS:

1. Question No. 1 is Compulsory.
2. Answer any **FOUR** questions from the remaining (Q.2 to Q.7).
3. Figures in the margin indicate full marks.

Q.1. Multiple Choice Questions

$$[2 \times 7 = 14]$$

(i) 100% modulation in AM corresponds to a modulation index of:

(ii) The phenomenon of "Skip Distance" is associated with:

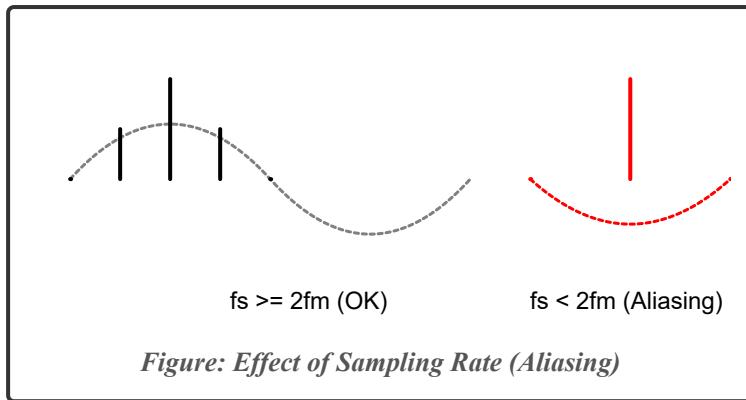
(a) Ground Wave	(b) Space Wave
(c) Sky Wave	(d) Tropospheric Scatter

(iii) In a superheterodyne receiver, the Mixer stage is also known as:

(iv) Pre-emphasis is done at the:

- (a) Transmitter
- (b) Receiver
- (c) Channel
- (d) Antenna

(v) Which is a Digital Modulation technique?


(vi) If the maximum frequency in a signal is W , the Nyquist Rate is:

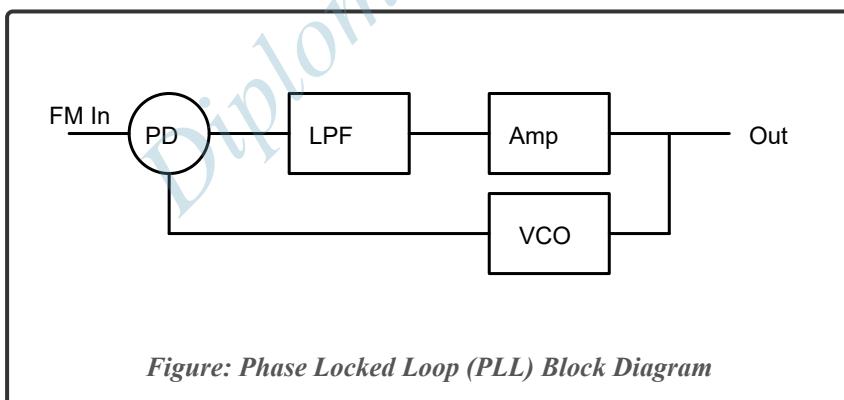
(a) W (b) 2W
(c) $W/2$ (d) $4W$

(vii) Ground wave propagation is suitable for frequencies:

SECTION B (LONG ANSWER TYPE)

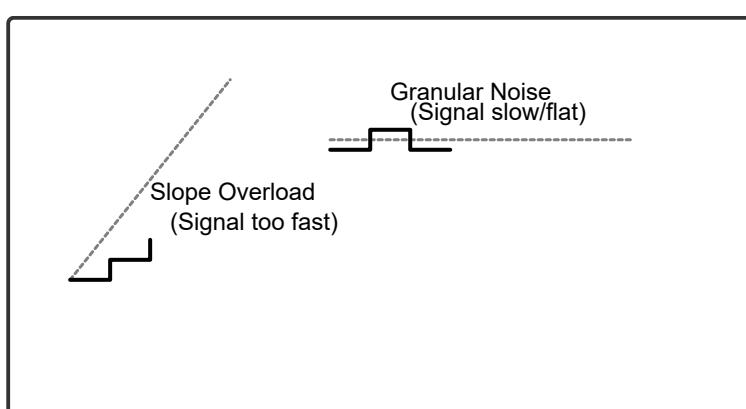
Q.2. (a) What is **Sampling Theorem**? Explain the effect of **Aliasing** if the sampling rate is less than the Nyquist rate ($f_s < 2f_m$). [7]

Figure: Effect of Sampling Rate (Aliasing)


Q.2. (b) Draw the block diagram of a **TRF (Tuned Radio Frequency) Receiver**. What are its main disadvantages (Instability, Variation in Bandwidth)? [7]

Q.3. (a) Explain **Ratio Detector** for FM demodulation. How is it better than a slope detector? [7]

Q.3. (b) Define **Signal-to-Noise Ratio (SNR)** and **Noise Figure**. Explain the effect of noise in AM and FM systems. [7]


Q.4. (a) Derive the relationship between **Total Current (It)** and **Carrier Current (Ic)** in AM. If $I_c = 10A$ and $\mu = 0.5$, calculate I_t . [7]

Q.4. (b) Explain the working of a **Phase Locked Loop (PLL)** and its application as an FM Demodulator. [7]

Figure: Phase Locked Loop (PLL) Block Diagram

Q.5. (a) Explain **Delta Modulation (DM)**. What is **Slope Overload Distortion** and **Granular Noise**? [7]

Q.5. (b) Explain **Ground Wave Propagation**. Why is it limited to low frequencies and short distances? [7]

Q.6. (a) Draw the block diagram of an **FM Transmitter** (Reactance Modulator type) and explain its working. [7]

Q.6. (b) Comparison between **Ground Wave, Sky Wave, and Space Wave** propagation on the basis of Frequency range and Mode of travel. [7]

Q.7. Write Short Notes on (Any FOUR): **[3.5 × 4 = 14]**

- a. Single Sideband (SSB) Transmission
- b. Advantages of Superheterodyne Receiver
- c. Quantization Process
- d. Double Sideband Suppressed Carrier (DSB-SC)
- e. Concept of Guard Band

Diploma Wallah: Solution Key

MCQ: (i) c, (ii) c, (iii) b, (iv) a, (v) c, (vi) b, (vii) a.

Q2(a) Hint: Aliasing occurs if $f_s < 2f_m$. Use Low Pass Filter (Anti-aliasing filter) before sampling.

Q4(a) Answer: $I_t = 10 * \sqrt{1 + 0.25/2} = 10 * 1.06 = \mathbf{10.6 \text{ A}}$.