T oin our WhatsApp Group (Contact :- 9801487344)

Fage |

Unit 1:
Overview of Digital design with Verilog HDL
Evolution of CAD,

Digital circuit design has evolved rapidly over the last 25 years. Integrated circuits were then

invented where logic gates were placed on a single chip. The first integrated circuit (IC) chips were
SS1 (Small Scale Integration) chips where the gate count was very small. As technologies became
sophisticated, designers were able to place circuits with hundreds of gates on a chip. These chips
were called MS1 (Medium Scale Integration) chips. With the advent of LSI (Large Scale
Integration), designers could put thousands of gates on a single chip. At this point, design processes
started getting very complicated, and designers felt the need to automate these processes. Computer
Aided Design (CAD) techniques began to evolve

Chip designers began to use circuit and logic simulation techniques to verify the functionality
of building blocks of the order of about 100 transistors. The circuits were still tested on the
breadboard, and the layout was done on paper or by hand on a graphic computer terminal.

With the advent of VLSI (Very Large Scale Integration) technology, designers could design
single chips with more than 100,000 transistors. Because of the complexity of these circuits, it was
not possible to verify these circuits on a breadboard. Computer-aided techniques became critical for
verification and design of VLSI digital circuits. Computer programs to do automatic placement and
routing of circuit layouts also became popular. Logic simulators came into existence to verify the

functionality of these circuits before they were fabricated.

Emergence of HDLs

In the digital design field, designers felt the need for a standard language to describe digital
circuits. Thus, Hardware Description Languages (HDLs) came into existence. HDLs allowed the
designers to model the concurrency of processes found in hardware elements. Hardware description
languages such as Verilog HDL and VHDL became popular. HDLs allowed the designers to model
the concurrency of processes found in hardware elements

Logic synthesis pushed the HDLs into the forefront of digital design. Designers no longer had
to manually place gates to build digital circuits. They could describe complex circuits at an abstract
level in terms of functionality and data flow by designing those circuits in HDLs. Logic synthesis

tools would implement the specified functionality in terms of gates and gate interconnections

Design Flow

A typical design flow for designing VLSI IC circuits is shown in the following Figure.

T oin our WhatsApp Group (Contact :- 9801487344)

rage/

Design Specification

Y

Behavioral Description

Y

RTL Description (HDL)

Functional Verification

and Testing
Logic Synthesis/
Timing Verification

Y

Gate-Level Netlist

y

Logical Verification
and Testing

Y

Floor Planning
Automatic
Place and Route

Y

[Physical Layout

Y

| Layout Verification

v
|_ Implementation |

Design Specification:

Design Specifications describe abstractly the
functionality, interface, and overall architecture
of the digital circuit to be designed.

Behavioural description:

A behavioural description is then created to
analyse the design in terms of functionality,
performance and compliance to standards, and
other high-level issues. Behavioural descriptions
can be written with HDLs.

RTL Description and Functional verification:

The behavioural description is manually
converted to an RTL description. The designer
has to describe the data flow that will implement
the desired digital circuit. From this point
onward, the design process is done with the
assistance of CAD tools.

Logic synthesis tools convert the RTL description to a gate-level netlist.

A gate level netlist is a description of the circuit in terms of gates and connections between them.

The gate-level netlist is input to an Automatic Place and Route tool, which creates a layout.

The layout is verified and then fabricated on chip.

Recently Behavioural synthesis tools are emerging. These tools can create RTL descriptions

from a behavioural or algorithmic description of the circuit. As these tools mature, digital circuit

design will become similar to high-level computer programming

Need of Verilog HDL.:

e Designs can be described at a very abstract level by use of HDLs. Designers can write their

RTL description without choosing a specific fabrication technology. If a new technology

emerges, designers need not have to redesign their circuit Logic.

e By describing designs in HDLs, functional verification of the design can be done early in the

design cycle

e This provides a precise representation of the design.

T oin our WhatsApp Group (Contact :- 9801487344)

Fage 5

Trends in HDLs:

1. The current trend in design in HDL is at RTL level, because logic synthesis tools can be
created easily.

2. Behavioural synthesis has recently emerged. As these tools improve, designers will be able to
design directly in terms of algorithms and the behaviour of the circuit and then use CAD tools
to do the translation.

3. For very high speed circuits like microprocessors, the gate level netlist provided by logic
synthesis tools is not optimal. In such cases, designers can mix gate-level description directly
into the RTL description to achieve optimum results.

4. A trend that is emerging for system-level design is a mixed bottom-up methodology. This is

done to reduce development costs and compress design schedules.

T oin our WhatsApp Group (Contact :- 9801487344)

2. Hierarchical Modelling Concepts:

Design methodologies:

There are two basic types of digital design methodologies:
1. Top-down design methodology and
2. Bottom-up design methodology.

Top-Down design methodology:

The block diagram of top-down design process is as shown below

In a top-down design methodology, the top-level blocks are defined. The sub-blocks which are
necessary to build the top-level block are identified. The sub-blocks are further subdivided to leaf
cells, which are the cells that cannot further be divided.

Top level
block

sub-

block 3
leaf leaf leaf leaf] leaf leaf leaf leaf
cell cell cell cell | cell cell cell cell

Bottom-up design methodology:

The block diagram of Bottom — up design process is as shown below

Top level
/ bl OCk
macro macro macro macro
cell 1 cell 2 cell 3 cell 4
leaf leaf leaf leaf leaf leaf leaf leaf
cell cell cell cell cell cell cell

In a bottom-up design methodology, the building blocks that are available are identified. Bigger cells
are built, using these building blocks. These cells are then used for higher-level blocks until the top-
level block in the design is built.

Typically, a combination of top-down and bottom-up flows is used.

ragedL

Example:

T oin our WhatsApp Group (Contact :- 9801487344)

Consider a negative edge-triggered 4 bit ripple carry counter. The circuit diagram is as shown below

Ripple
Cali;_l;y q0 q1 q2 q3
Counter
r— - - - - ="\ - - - - A
| 3 |
I 9 q q q !
clock —T9) T_FF T_FF T _FH T_FF |
| tff tff1 tF2 th3 |
{ |
l |
reset - |
[. m . . . T MR . -

The ripple carry counter shown in Figure is made up of negative edge triggered toggle flip-flops (T-
FF). Each of the T-FFs can be made up from negative edge-triggered D-flip-flops (D-FF) and
inverters. Thus, the ripple carry counter is built in a hierarchical fashion by using building blocks.

The diagram for the design hierarchy is shown below.

Ripple Carry
/ 7nter \
(tffﬂ:l (tfﬂ) (tff2) (tffS)
Inverter Inverter
gat@ gate gate gate

In a top-down design methodology, the functionality of the top-level block i.e., the ripple carry
counter is specified. Then, the counter with T-FFs.is implemented which is built with the T-FFs from
the D-FF and an additional inverter gate. Thus, bigger blocks are broken into smaller building sub-
blocks until the blocks cannot be broken further.

The bottom-up methodology flows in the opposite direction. The top-level building blocks are built
using small building blocks.

e.g., D-FF is built from and and or gates, and T-FFs are built using D-FF and inverter gates.

Modules
A module is the basic building block in Verilog. In Verilog, a module is declared by the keyword

module. A corresponding keyword endmodule must appear at the end of the module definition.
Each module must have a module-name, which is the identifier for the module, and a module-

terminal-list, which describes the input and output terminals of the module.

rage 5

The Syntax is

T oin our WhatsApp Group (Contact :- 9801487344)

Fage(®

module<module-name> (<module-terminal-list>)

<module internals>

Endmodule

Example:
Consider T- FF. The module for T-FF is as shown below.
module T-FF (q, clock, reset);

<functionality of T-flip-flop>

endmodule

Internals of each module can be defined at four levels of abstraction, depending on the needs of the

design. They are

1.
2.
3.
4.

Behavioural or algorithmic level
Dataflow level
Gate level

Switch level

Behavioural or algorithmic level :

This is the highest level of abstraction provided by Verilog HDL.
A module can be implemented in terms of the desired design algorithm without considering

the hardware implementation details.
It specifies the circuit in terms of its expected behaviour.

Designing at this level is very similar to C programming.

Dataflow level

At this level the module is designed by specifying the data flow.

This design describes how data flows between hardware registers and how the data is
processed in the design

This style is similar to logical equations.

The specification is comprised of expressions made up of input signals and assigned to

outputs. .

Gate level (Structural level)

The module is implemented in terms of logic gates and interconnections between these gates.

It resembles a schematic drawing with components connected with signals.

T oin our WhatsApp Group (Contact :- 9801487344)

e A change in the value of any input signal of a component activates the component. If two or
more components are activated concurrently, they will perform their actions concurrently as
well.

e Since logic gate is most popular component, Verilog has a predefined set of logic gates
known as primitives. Any digital circuit can be built from these primitives.

Switch level

e This is the lowest level of abstraction in Verilog.

e A module can be implemented in terms of switches, storage nodes, and the interconnections
between them.

e Design at this level requires knowledge of switch-level implementation details.

Instances:

A module provides a template from which actual objects are created. When a module is invoked,
Verilog creates a unique object from the template. Each object has its own name, variables,
parameters and Input/output interface. The process of creating objects from a module template is

called instantiation, and the objects are called instances

{Explanation:
The difference between these two can be summed up as follows: A module position is a container in
which you can assign modules so they appear on the front end. A module instance is a single module,

injected directly into a specific place in the page}

Differences between modules and module instances:

Modules are the basic building blocks in Verilog. Modules are used in a design by instantiation.
An instance of a module has a unique identity and is different from other instances of the same

module. Each instance has an independent copy of the internals of the module
Components of a Simulation

Once a design block is completed, it must be tested. The functionality of the design block can be
tested by applying stimulus and checking results. Such a block is called the stimulus block. The
stimulus block is also commonly called a test bench.
There are two distinct components in a simulation:

e Stimulus block and

e . Design block
A stimulus block is used to test the design block. The stimulus block is usually the top-level block.

I~ There are two styles of stimulus application.
)

S

X

T oin our WhatsApp Group (Contact :- 9801487344)

In the first style, the stimulus block instantiates the design block and directly drives the signals in

the design block. The block diagram is as shown below.

(Stimulus block) Here the stimulus block becomes the
clk reset . .
+ top-level block. It manipulates signals
(Design Block) clk and reset, and it checks and
giﬂﬂfefany displays output signal q
q

The second style of applying stimulus is to instantiate both the stimulus and design blocks in
a top-level dummy module. The stimulus block interacts with the design block only through the

interface. This style of applying stimulus is shown below.

Top-Level Block The stimulus module drives the
Bl signals d-clk and d-reset, which are
il _CIK | > clk '
B?m;:usd —— connected to the signals clk and
oc _reset o esign Bloc
| Ripple Carry reset in the design block. It also
Counter

checks and displays signal c-q,

Laq <
d which is connected to the signal q in

the design block

The function of top-level block is simply to instantiate the design and stimulus blocks.
Example:

Consider ripple carry counter. The design block and the stimulus block are defined. The stimulus is applied to

the design block and the outputs are monitored. The circuit is as shown below

reset]

Ripple :
Cal:l)‘li?y 40 q1 % el
Counter
] u——n#h__jrﬂ
| |
d

e 1 q q q q '
clock — 9 T FH D T_FF D> T_FF D> T_FF |
l tff0 tff1 tFF2 tFF3 |
|
|
|

Let us consider top-down design methodology. First, the Verilog description of Ripple carry counter
which is the top-level design block is written.

Module ripple-carry-counter(q, clk, reset) ;

output [3:0]q;

Fage¢y

input clk, reset

T oin our WhatsApp Group (Contact :- 9801487344)

Fage’)

T-FF tff0 (q[0] ,clk, reset);1°234

T-FF tff 1 (q[1] ,q[0], reset);

T-FF tft 2 (q[2] ,q[1], reset);

T-FF tff 3 (q[3] ,q[2], reset);

endmodule

In the above module, four instances of the module TFF (T-flip-flop) are used. Therefore, the
internals of the module T-FF must be defined.

module T-FF (q, clk, reset) ;

output q;

input clk, reset;

wire d;

D-FF dff0 (q, d, clk, reset);

notnl(d, q) ; // not is a Verilog-provided primitive. case sensitive
endmodule

Since T-FF instantiates D-FF, the internals of module D-FF must be defined.

// module D-FF with synchronous reset
module D-FF(q, d, clk, reset) ;

output q;

input d, clk, reset;

reg q;

always (@ (posedge, reset or negedgeclk)
if (reset)

q=1'b0;

else
q=d;
endmodule

All modules have been defined down to the lowest-level leaf cells in the design methodology. The
design block is now complete.

Stimulus Block:

Now the stimulus block is written to check if the ripple carry counter design is functioning correctly.
In this case, the signals clk and reset are controlled so that the regular function of the ripple carry

counter and the asynchronous reset mechanism are both tested. The wave forms are as shown below.

T oin our WhatsApp Group (Contact :- 9801487344)

Fage | ()

i n il ipiginBiiglnininlininlis
I

reset

L
' |
a0 ===} o) R X)
|
| | |

Now the stimulus block is written to know how the design block is instantiated in the stimulus block

that will create the above waveforms

Here the cycle time for clk is 10 units; the reser signal stays up from time 0 to 15 and then goes

up again from time 195 to 20S. Output q counts from 0 to 15.

module stimulus;
reg clk;

reg reset;
wire [3:0] q;
// instantiate the design block

ripple-carry-counterrl (q, clk, reset);

// Control the clk signal that drives the design block.Cycle time = 10 initial

clk =1'b0; //set clk to 0

always
#5 clk = ~clk;

/toggle clk every 5 time units

// Control the reset signal that drives the design block
// reset is asserted from 0 to 20 and from 200 to 220 initial
begin

reset =1'bl;

#IS reset =1'b0;

#180 reset =1'bl;

#10 reset =1'b0;

#20 $finish; //terminate the simulation

end

// Monitor the outputs

endmodule

rage | |

3. Basic concepts:

The digital circuits can be represented in textual form in Verilog. The code written in textual form is
called source code. The source code is created with the combinations of character and words which
are called KEYWORDS and SYNTAX / SEMANTICS. These are called Lexical tokens.
Combination of more than one lexical tokens forms LEXICAL CONVENTIOINS

LEXICAL CONVENTIOINS

Lexical tokens in Verilog HDL are given below.

e White space e String

e Comment e Identifier
e Operator e Keyword
e Number

White space (Blank spaces):

White space is a term used to represent the characters for spaces, tabs, newlines . White spaces

are used in stings which can be incorporated using double quotes (). The semantics for white

spaces in the string is as shown below:

Escape string Character produced by escape string
\b Blank space
\n New line character
\t Tab character
\\ \ character
\” “ character
Comments:

There are two ways to write comments in Verilog. A single line comment starts with // and tells Verilog
compiler to treat everything after this point to the end of the line as a comment. A multiple-line comment

starts with /* and ends with */ and cannot be nested.

Comments are used to increase the readability of code. Comments are ignored by the simulator.
Example:

a=b &&c; // This is a one-line comment

/ * This is a multiple line

comment* /

/ * This is / * an illegal Binary operator — which worsl* / comment * /

Operators:

The operation which is to be performed is decided by operators. There are three kinds of operators
available in Verilog. They are

1. Unary operator — which works on single operands

Eg: a=~Db; //~ is a unary operator. b is the operand

rage | /

2. Binary operator — which works on two operands

Eg: a=b &&c; // &&is a binary operator. b and c are operands

3. Ternary operator— which works on three operands. A question mark and a colon separate the

three targets of the operation.

Eg:a=b?c:d;//?: is a ternary operator. b, ¢ and d are operands

Number Specification:

There are two types of number specification in Verilog:

e Sized and
e Unsized
Sized numbers:

Sized numbers are represented as <size>‘<base format><number>.
e Size is written only in decimal and specifies the number of bits in the number.
e [Legal base formats are decimal ('d or 'D), hexadecimal ("4 or 'H), binary (b or 'B) and octal
('oor 'O).
e The number is specified as consecutive digits from 0, I, 2,3,4,5, 6,7, 8, 9, a, b, ¢, d, e, f. Only
a subset of these digits is legal for a particular base. Uppercase letters are legal for number
specification
Example:
4'bllll // This is a 4-bit binary number
12'habc // This is a 12-bit hexadecimal number
16'd255 // This is a 16-bit decimal number.

Unsized numbers

Numbers that are specified without a <base format>specification are decimal numbers by default.
Numbers that are written without a <size> specification have a default number of bits of 32.
Example:

23456 // 23456 is a 32-bit decimal number by default

'he3 // ¢3is a 32-bit hexadecimal number

'021 // 21 is a 32-bit octal number

X or Z values:

Verilog has two symbols for unknown and high impedance values. An unknown value is denoted by

an X. A high impedance value is denoted by z.

Example:
12'h13x // 13x is a 12-bit hex number; 4 least significant bits unknown
6'hx //x is a 6-bit hex number

32'bz //z is a 32-bit high impedance number

Fage | 5

Negative numbers

e Negative numbers can be specified by putting a minus sign before the size for a constant
number.

e Negative numbers are stored as compliment two and the minus sign must be included before
the specification of size. [It is illegal to have a minus sign between <base format> and
<number>].

Example:

-10'd5 // 10 bit negative number stored as 2's complement of 5.

-6' d3 // 6-bit negative number stored as 2's complement of 3
4'd -2 // 1llegal specification

Underscore characters and question marks:

An underscore character "-" is allowed anywhere in a number except the first character.
Underscore characters are allowed only to improve readability of numbers and are ignored by
Verilog.

A question mark "?" is the Verilog HDL alternative for z when used in a number. The ?is
used to enhance readability in the casex and casez statements.

Example:

12'b1111_0000_1010// Use of underline characters for readability
4'b10?? // Equivalent of a 4'bl0zz
Strings
e A string is a sequence of characters that are enclosed by double quotes.
e The restriction on a string is that it must be contained on a single line, that is, without a
carriage return. It cannot be on multiple lines.

Example:

""Hello Verilog World" // is a string
'a/b" //is a string

Keywords and Identifiers:

e Keywords are special identifiers reserved to define the language constructs.
® Keywords are in lowercase.

Example: module, wire, assign, endmodule etc.,

Identifiers are names given to objects.
e Identifiers are Made up of alphanumeric characters, the underscore (_) and the dollar sign($)
e (Case sensitive.
e Start with an alphabetic character or an underscore.

e They cannot start with a number or a § sign
Example:

reg value; // reg is a keyword; value is an identifier

4

rage | 4.

input clk; // input is a keyword, clk is an identifier

Escaped Identifiers

e Escaped identifiers begin with the backslash (\) character and end with whitespace (space, tab,

or newline).

e All characters between backslash and whitespace are processed literally.

e Any printable ASCII character can be included in escaped identifiers.

Example:

va+b-o

my_ name

Data Types:

A data type in Verilog is designed to represent the data storage and transmission. The 10 data types

used in Verilog are —

1. Value Set 6. Simulation Time
2. Nets 7. Arrays
3. Registers 8. Memories
4. Vectors 9. Parameters
5. Numbers —Integer and Real 10. Strings
Value Set

Verilog supports four values and eight strengths to model the functionality of real hardware. The four

value levels are

Condition in Hardware Circuits

Logic one, true condition Logic

logic zero, false condition

Unknown value

Value
Level
1
In addition to 0
strength levels X
resolve which z

High impedance, floating state

appear on a net or gate output.

There are two types of strengths: drive strengths and charge strengths.

The drive strength types are - supply, strong, pull, weak, and highz strengths

The charge strength types are -large, medium and small strengths

logic values,
are often used to

value should

Pagei 5

Strength Level | Type Degree When signals combine, their
supply Driving strongest strengths and values shall

- determine the strength and
strong Driving

_ / value of the resulting signal in
pull Driving accordance with the principle.
Large Storage .

1. If two signals of unequal

Weak Driving strengths are driven on a
Medium Storage wire, the stronger signal
small Storage prevails
highz high impedance | Weakest Example: If two signals of

ctrenoth etranol and waaln Arive

2. If two signals of equal strengths are driven on a wire, the result is unknown.

Example:

If two signals of strength strong 1 and strong 0 conflicts, the result is an X.

Nets:

The nets variables represent the physical connection between structural entities. They do not store

values. They have the value of their drivers.

Example:

b— .
el 9

e Nets are declared with the keyword wire.

e A wire represents a physical wire in a circuit and is used to connect gates or modules. A wire

does not store its value.

In the Figure net a is connected to the output of and gate gl. Net awill
continuously assume the value computed at the input of gate g/, which is
b&c

e They are one-bit values except in vectors.

e The default value of a net is Z.

e nets not a keyword but represents a class of data types such as w i r e , wand, wor, tri, triand,

trior, trireg, etc.

Example:

wire a; // Declare net a for the above circuit

wire b,c; // Declare two wires b, ¢ for the above circuit

Registers:

e Registers are data storage elements. They retain value until another value is placed onto them.

® Register is a variable that can hold a value.

e Unlike a net, a register does not need a driver.

Fage | 6

e Verilog registers do not need a clock.

e Values of registers can be changed anytime in a simulation byassigning a new value to the
register.

e Register data types are commonly declared by the keyword reg.

e The default value for a reg data type is X.

Example:

reg reset;

initial

begin

reset =1'bl;

#100 reset = 1'b0;

end
Vectors

Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not specified,
the default is scalar (I-bit).

Example:

wire a; // scalar net variable, default
wire [7:0] bus; // 8-bit bus

The left number in the squared brackets is always the most significant bit of the vector.

Integer, Real and Time Register Data Types

Integer

e An integer is a variable data type that stores the value until next assignment.
e Integers are declared by the keyword integer. The width for an integershould be at least 32 bits.

e Registers declared as data type reg store values as unsigned quantities, whereas integers

store values as signed quantities.

¢ Real number constants and real register data types are declared with the keyword real.

e They can be specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 36, which is
3 X 109.

e Real numbers cannot have a range declaration and their default value is 0. When a real value is

assigned to an integer, the real number is rounded off to the nearest integer.

Time

e Verilog simulation is done with respect to simulation time.

e A time variable is declared with the keyword time.

e The width for time register data types is at least 64 bits.
Arrays

Pagei 7

Arrays are used in Verilog for reg, integer, time and vector register data types. Arrays are not
used for real variables.

Each element of the array can be used as a scalar or vector net.

Arrays are accessed by

<array-name> [<subscript>l.

Multidimensional arrays are not permitted in Verilog.

The difference between a vector and an array is - vector is a single element that is n-bits

wide but arrays are multiple elements that are I-bit or n-bits wide.

Example:

integer count[0:7]; /an array of 8 count variables

Memories

In digital simulation, register files, RAMS, and ROMs are modeled .
Memories are modeled in Verilog as one dimensional array of registers.
Each element of the array is known as a word.

Each word can be one or more bits.

Depth of memory should be declared by specifying a range following the memory identifier

Example: the memory reg [5:0]

Parameters

Constants in Verilog are defined in a module by the keyword parameter.
Parameters cannot be used as variables.

Module instances can be altered by changing the value of a parameter.

Example:

parameter port-id = 5; //Defines a constant port-id

parameter cache line width =256; //constant defines width of cache line

Strings

In Verilog, string literals are just packed arrays of bits (or a bit-vector).

Strings are the characters stored in reg data type.

The width of the register variables must be large enough to hold the string.

Each character in the string takes up 8 bits (1 byte).

If the width of the register is greater than the size of the string, Verilog fills bits to the left of the
string with zeros.

If the register width is smaller than the string width, Verilog truncates the leftmost bits of the

string.

Example:

reg [8*18:1] string-value;

Fage | &

//Declare a variable that is I8 bytes wide, each 8 bit wide.

Svstem Tasks

Verilog contains the pre-defined system tasks and functions which provide common operations .All
system tasks appear in the form $<keyword>. Operations such as displaying onthe screen, monitoring

values, stopping, and finishing are done by system tasks.

Task Function
To display on screen $display
For monitoring values $monitor
Stopping and finishing simulation $time
Terminate simulation $finish

Compiler Directives

All compiler directives are defined by using the ' <keyword>construct. Compiler directives begin
with """ an accent grave. The compiler directives tell the compiler the method of processing its

input. Some of the complier directives are-

1. “define
2. ‘include

The 'define directive is used to define text macros in Verilog. The defined constants or text macros

are used in the Verilog code by preceding them with a ' (back tick).
Example:

//define a text macro that defines default word size

//Used as "WORD-SIZE in the code

'define WORD-SIZE 32

'define WORD-REG reg [31:0]

The ' include directive includes the entire contents of Verilog source file in another Verilog file

during compilation. It is used to include header files, which contain global or commonly used

definitions

Eg:
// Include the file header.v, which contains declarations in the
// main verilog file design.v.

'include header.v

Fage | 9

4. Modules and Ports

A module is a block of Verilog code that implements certain functionality. The module name, port

list, port declaration, and optional parameters must appear first in a module definition. Port list and

port declarations are present only if the module has a ports to interact with the external environment.

The block diagram of components in a Verilog module is as shown below.

Module Name,
Port List, Port Declarations (if ports present) *The five components within
Parameters(optional),
a module are —

Declarations of wires, Data flow statements 1. variable declarations,
regs and other variables (assign)
2. dataflow statements,

3. 1instantiation of lower

= modules,
Instantiation of lower always and initial blocks. '
level modules All behavioral statements 4 behavioral blocks and
go in these blocks.

5. Tasks or functions.

Tasks and functions

endmodule statement

These components can be in any order and at any place in the module definition. The endmodule
statement must always come last in a module definition. All components except module, module
name and endmodule are optional and can be mixed and matched as per design needs. Verilog allows
multiple modules to be defined in a single file. The modules can be defined in any order in the file.

Example:

Consider the S R latch as shown below.

So—
Q The SR latch has S and R as the input ports and Q and Qbaras the
output ports.
The SR latch and its stimulus can be modeled as shown in Example
7 Q

// Module name and port list
/I SR-latch module

module SR-latch (Q, Qbar, Sbar, Rbar) ;

//Port declarations

Fage /()

output Q, Qbar;

input Sbar, Rbar;

// Instantiate lower-level modules

nandnl (Q, Sbar, Qbar) ;

nand n2 (Qbar, Rbar, Q) ;

// endmodule statement

endmodule

The S R latch stimulus can be modeled as shown
// Module name and port list(No ports are there)
// Stimulus module

module Top;

// Declarations of wire, req, and other variables
wire q, gbar;

reg set, reset;

// Instantiate lower-level modules
// In this case, instantiate SR-latch
// Feed inverted set and reset signals to the SR latch

SR-latch ml(q, gbar, -set, -reset);
// Behavioral block, initial

initial

begin

$monitor($time, " set = %b, reset= %b, q= %b\nU,set,reset,q);
set=0; reset = 0;

#5 reset =1;
#5 reset = 0;
#5 set =1;
end

// endmodule statement
endmodule
[Notice the following characteristics about the modules defined above.
In the SR latch definition above , notice that all components described in Figure need not be present
in a module. We do not find variable declarations, dataflow (assign) statements, or behavioral blocks
(always or initial).

However, the stimulus block for the SR latch contains module name, wire, reg, and variable
declarations, instantiation of lower level modules, behavioral block (initial), and endmodule

statement but does not contain port list, port declarations, and data flow (assign) statements.

rage/ |

Thus, all parts except module, module name, and endmodule are optional and can be mixed and

matched as per design needs.]

Ports:

Port is an essential component of the Verilog module. Ports are used to communicate for a module
with the external world through input and output. Ports define the interface of a Verilog module to
the outside world.

Example:

The input output pins of IC are its ports
List of Ports

A module definition contains an optional list of ports.
Example:

Consider a 4-bit full adder that is instantiated inside a top-level module Top. The diagram for the
input/ output ports is shown in Figure.

full
adder

(4 bit)
fulladd4

!0 Ports for Top and Full Adder

The module fulladd4 takes input on ports a, b, and ¢-in and produces an output on ports sum and
c-out. Thus, module fulladd4 performs an addition for its environment. The module Top is a top-
level module in the simulation and does not need to pass signals to or receive signals from the
environment. Thus, it does not have a list of ports.

The module names and port lists for both module declarations in Verilog are as shown below.

Example:
module fulladd4(sum, c-out, a, b, c-in); //module with a list ofports
module Top; // No list of ports, top-level module in simulation

Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared as follows:

Verilog Keyword Type of Port
input Input port
output Output port

rage/ /

| inout | Bidirectional port

Example:

Input list of ports/terminals ; Input s,r; Input[7:0] s,r;

Output list of ports/terminals ;Output y,z; Output [3:0] y,z

Inout list of ports/terminals ;Inout a,b;Inpit[15:0] a,b;

Examplel : 4 bit full adder

module fulladd4(sum, c-out, a, b, c-in);

//Begin port declarations section

output [3 : 0] sum; // 4 bit full adder hence the vector [3: 0] which is 4 bit
output c-out;

input [3:0] a, b;

input c-in;

//End port declarations section

Endmodule

All ports declarations are implicitly declared as wi r e in Verilog. Thus, if a port is intended to be a

wire, it is sufficient to declare it as output, input, or inout.

However, if output ports hold their value, they must be declared as reg.

Example2 : D Flip- flop

module DFF(q, d, clk, reset) ;

output q;

reg q; // Output port q holds value; therefore it is declared as reg.
input d, clk, reset;

endmodule

All port declarations can be done in module declaration as shown below.
module full add4(output reg[3:0] sum; output reg cout; input [3:0] a,b; input cin);

Port Connection Rules

A port consists of two units - one unit that is internal to the module and another that is external to
the module
The block diagram of the rules that are governing port connections when modules are instantiated

within other modules are summarized below.

Fage/ 5

net IIl[!lltS
Internally, input ports must always be of the

net ¢ - type net. Externally, the inputs can be
connected to a variable which is a reg or a
input output net.
— ——
reg or net net reg or net net

Outputs
Internally, outputs ports can be of the type reg or net. Externally, outputs must always be connected

to a net.
Inouts
Internally, inout ports must always be of the type net. Externally, inout ports must always be

connected to a net.
Width matching
It is legal to connect internal and external items of different sizes when making inter-module port

connections. A warning is issued when the widths do not match.

Unconnected ports

Verilog allows ports to remain unconnected. A port can remain unconnected by instantiating a

module as shown below.

fulladd4 fa0 (SUM, , A, B, C-IN); // Output port c-out is unconnected.

Example of illegal port connection

module Top;

//Declare connection variables
reg [3:0]A,B;

reg C-IN;

reg [3:0] SUM; // this is the output. The output should be always net or wire.
//Hence illegal

wire C-OUT;

Connecting Ports to External Signals

There are two methods of making connections between signals specified in the module instantiation
and the ports in a module definition. They are
e (Connecting by ordered list

e Connecting ports by name

4

rage 2 4

Connecting by ordered list
In this method the signals to be connected must appear in the module instantiation in the same order

as the ports in the port list in the module definition.

Example:

Consider 4 bit full adder with Top module. The Verilog code is

module fulladd4 (sum, c-out, a, b, c-in) ;
output [3: 01 sum;

output c-out;

input [3:0] a, b;

input c-in;

<module internals>

IO Ports for Top and Full Adder

module Top;

//Declare connection variables
reg [3:0]A,B;

reg C-IN;

wire [3:0] SUM;

wire C-OUT;

<stimulus>

Endmodule

consider the module fulladd4 To connect signals in module Top by ordered list, the external signals
SUM, C-OUT, 4, B, and CJN appear in exactly the same order as the ports sum, c-out, a, b, and c-in
in module definition of fulladd4.

Connecting ports by name

Verilog provides the capability to connect external signals to ports by the port names.

Example: consider Full — adder 4

module fulladd4 (sum, c-out, a, b, c-in) ;
output /3 : 01 sum;

output c-cout;

input [3:0] a, b;

input c-in;

<module internals>

age

endmodule

module Top;

//Declare connection variables
reg [3:0]A,B;

reg C-IN;

wire [3:0] SUM;

wire C-OUT;

<stimulus>

Endmodule

fulladd4 fal (.c-out(C-OUT), .sum(SUM), .b(B), .c-in(C-1n), .a(a))

Hierarchical Names

Every module instance, signal, or variable is defined with an identifier. Hierarchical name

referencing allows to denote every identifier in the design hierarchy with a unique name. A

hierarchical name is a list of identifiers separated by dots (" ."). The advantages of mentioning the

hierarchical name is any identifier can be addressed from any place in the design by simply

specifying the complete hierarchical name of that identifier.

The top-level module is called the root module because it is not instantiate. To assign a unique name

to an identifier, start from the top-level module and trace the path along the design hierarchy to the

desired identifier anywhere.
Example:

Consider S R latch. The design hierarchy is shown in Figure

Stimulus
(Root level)
/ q, qbar

ml set, reset
(SR_latch) (variables)

nl n2 Q, Qbar

(nand) (nand) SR
(signals)

Example:

For this simulation, stimulus is the top-
level module. Since the top-level
module is not instantiated anywhere, it
is called the root module. The
identifiers defined in this module are
g, gbar, set, and reset. The root
module instantiates ml, which is a
module of type SR-latch. The module
ml instantiates nand gates nl and n2.
Q, Qbar, S, and Rare port signals in
instance ml. Hierarchical name
referencing assigns a unique name to
each identifier

PageZ 6

stimulus

stimulus.qbar
stimulus.reset
stimulus.ml.Q
stimulus.ml.S
stimulus.nl

stimulus.q
stimulus.set
stimulus.ml.Qbar
stimulus.ml.R
stimulus.n2

Each identifier in the design is uniquely specified by its hierarchical path name

Stimulus
(Root level)

ml
(SR_latch)

nl
(nand)

(nand)

q, gbar
set, reset
(variables)

Q, Qbar
S,R
(signals)

Behavioral Modeling

In behavioural modelling the digital design is carried out in terms of algorithm and its performance.

Structured Procedures

Structured procedures provide a means of modeling blocks of procedural statements. There are two

structured procedure statements in Verilog: always and initial

initial Statement

All statements inside an initial statement constitute an initial block. An initial block starts at time 0,
executes exactly once during a simulation and then does not execute again. If there are multiple
initial blocks, each block starts to execute concurrently at time 0. Each block finishes execution

independently of other blocks
Example:

module stimulus;
reg x,y, a,b, m;
initial

m =1’b0 //single statement; does not need to be grouped

initial

begin

#5 ¢ //multiple statements; need to be grouped

#25 b =1"b0;

end

initial

begin

#10 X =1"b0;

#25 y =1Dbl;

end

initial

#50 $finish; Time Statement executed

endmodule 0 m=1b0;
5 a=1"b0;
10 x =10
30 b =1b0;
35 y =1bl;
50 $finish;

always Statement

All behavioral statements inside an always statement constitute an always block. The always
statement starts at time 0 and executes the statements in the always block continuously in a looping
fashion. This statement is used to model a block of activity that is repeated continuously in a digital
circuit

Example:

Consider a clock generator module that toggles the clock signal every half cycle
module clock-gen;

reg clock

//Initialize clock at time zero

initial

clock = 1'b0;

//Toggle clock every half-cycle (time period = 20)
always

#10 clock = ~clock;

initial

#1000 $finish;

endmodule

In the above Example the always statement starts at time 0 and executes the statement clock =
~clock every 10 time units. Notice that the initialization of clock has to be done inside a separate
initial statement. Also, the simulation must be halted inside an initial statement. If there is no $

stop or S$finish statement to halt the simulation, the clock generator will run forever.

Procedural Assignments

Procedural assignments update values of reg, integer, real, or time variables. The value placed on a
variable will remain unchanged until another procedural assignment updates the variable with a
different value. The syntax for the simplest form of procedural assignment is
<assignment> : : = < lvalue> = <expression>
There are two types of procedural assignment statements: blocking and nonblocking.
Blocking assignments
Verilog supports blocking and non-blocking assignments statements within the always block with
their different behaviours.

v Blocking assignment statements are executed in the order they are specified in a sequential

block.
v" A blocking assignment will not block execution of statements that follow in a parallel block.

v' The ¢ = ¢ operator is used to specify the Blocking assignments .

Example:
regx,y,z,
reg [15: 0] reg-a, reg-b;

integer count;

initial

begin

x=0; y=l; z=1; //Scalar assignments

count = 0; //Assignment to integer variables

reg-a = 16'b0; reg-b = reg-a; //initialize vectors

#1S reg-a[2] = Irbl; //Bit select assignment with delay

#10 reg-b[15:13] = (x, y, 2) //Assign result of concatenation to part select of a vector
count = count + 1; //Assignment to an integer (increment)

end

v" In the above example the statement y = 1 is executed only after x = 0 is executed.
v The behaviour in a particular block is sequential in a begin-end block
v’ The statement count = count + 1 is executed last.
The simulation times at which the statements are executed are as follows:
v All statements x = () through reg-b = reg-a are executed at time 0
v Statement regal21 = 0 at time = 15
v Statement reg-b[15:13] = {x, y, z) at time = 25
v" Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 will be

executed at time = 25 units

Nonblocking Assignments

Non-blocking assignment statements are allowed to be scheduled without blocking the execution of
the following statements and is specified by a (<=) symbol.

Example:

regx,y, z;

reg [15:0] reg-a, reg-b;

integer count;

//All behavioral statements must be inside an initial or always block

initial

begin

x=0; y=1; z=1; //Scalar assignments
count = 0; //Assignment to integer variables

reg-a = 16'b0; reg-b =reg-a; //Initialize vectors

reg-a[2] <= #I5 I'bl; //Bit select assignment with delay
reg-b[15: 13] <=#10 {x, y, z); //Assign result of concatenation
//to part select of a vector
count <= count + 1; //Assignment to an integer (increment)
end
The statements x = 0 through reg-b = reg-a are executed sequentially at time 0.
The three nonblocking assignments are processed at the same simulation time.
1. reg-a|2] = 0 is scheduled to execute after 15 units (i.e., time = 15)
2. reg-b[15:13]= {x, vy, z} is scheduled to execute after 10 time units (i.e., time = 10)

3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0)

Application of nonblocking assignments

They are used as a method to model several concurrent data transfers that take place after a
common event.

Consider the following example where three concurrent data transfers take place at the positive
edge of clock.

Example:

always @(posedge clock)

begin

regl<=#linl;

reg2 <= @(negedge clock) in2 A in3;

reg3 <= #l regl; //The old value of regl

end

At each positive edge of clock, the following sequence takes place for the nonblocking
assignments.

1. A read operation is performed on each right-hand-side variable, inl, in2, in3 and regl, at the
positive edge of clock. The right-hand-side expressions are evaluated, and the results are stored
internally in the simulator.

2. The write operations to the left-hand-side variables are scheduled to be executed at the time
specified by the intra-assignment delay in each assignment, that is, schedule "write" to reg | after 1
time unit, to reg2 at the next negative edge of clock, and to reg3 after 1 time unit.

3. The write operations are executed at the scheduled time steps. The order in which the write
operations are executed is not important because the internally stored right-hand-side expression
values are used to assign to the left-hand-side values. For example, note that reg3 is assigned the
old value

Thus, the final values of regl, reg2, and reg3 are not dependent on the order in which the

assignments are processed.

To understand the read and write operations further, consider the following example, which
is intended to swap the values of registers a and b at each positive edge of clock, using two
concurrent always blocks

Example:

[/Mustration 1: Two concurrent always blocks with blocking statements

always @(posedge clock)
a=Db;
always @(posedge clock)
b=a;

//Mlustration 2: Two concurrent always blocks with nonblocking statements

always @(posedge clock)

a<=b;

always @(posedge clock)

b<=a;

In the above example, in illustration 1, there is a race condition when blocking statements are used.
Either ¢ = b would be executed before b = a, or vice versa, depending on the simulator
implementation. Thus, values of registers @ and b will not be swapped. Instead, both registers will

get the same value (previous value of a or b), based on the Verilog simulator implementation.

However, nonblocking statements used in i/lustration 2 eliminate the race condition. At the positive
edge of clock, the values of all right-hand-side variables are "read,” and the right-hand-side
expressions are evaluated and stored in femporary variables. During the write operation, the values
stored in the temporary variables are assigned to the left-hand-side variables. Separating the read
and write operations ensures that the values of registers a and b are swapped correctly, regardless of

the order in which the write operations are performed.

Conditional Statements:

Conditional statements are used for making decisions based upon certain conditions. These
conditions are used to decide whether or not a statement should be executed. Keywords i f and else
are used for conditional statements.
There are three types of conditional statements.

1. if statement

2. if — else statement

3. 1if-else- if statement.

1. Inif statement - statement executes or does not execute.

Syntax:

if (<expression>) true-statement ;

Example:

If (!lock) buffer = data;
If (enable) out = in;

2. Inif — else statement -either true-statement or false-statement is evaluated
Syntax :

if (<expression>) true-statement ; else false-statement ;

Example:

if (reset)
begin
dff <= 0;
end
else
begin
dff <= din;
end
3. In if-else- if statement - choice of multiple statements. Only one is executed.

Syntax:
if (<expressionl>) true-statementl ;
else if (<expression2>) true-statement?2 ;
else if (cexpression3>) true-statement3 ;
else default-statement ;
Example:
if (alu-control = = 0)
ly=x + z;
else if(alu-control == 1)
y=X-z
else if (alu-control == 2)
y=x*z;
else

$display ("Invalid ALU control signal");
Multiway Branching

The nested if-else-if can become unwieldy if there are too many alternatives. A shortcut to achieve
the same result is to use the case statement.
The keywords case, endcase, and default are used in the case statement

Syntax:

case (. expression)
alternativel: statement I;
alternative2: statement 2;
alternative3: statement 3;

Default: default-statement;
endcase

1. Each of statement 1, statement? ..., default-statement can be a single statement or a block of
multiple statements.

2. The expression is compared to the alternatives in the order they are written.

3. For the first alternative that matches, the corresponding statement or block is executed.

4. If none of the alternatives match, the default-statement is executed.

Example:

reg [1:0] alu-control;

case (alu-control)

2'd0:y=x+z;

2'dl:y=x-2z;

2'd2 :y =x*z

default : $display("Invalid ALU control signal");
endcase

4 : 1 Multiplexer

module mux4-to-1 (out, 10, i, 12, 13, sl, s0);
output out;

input 10, il, 12, 13;

input sl, SO;

reg out;

always @(sl or SO or i0 or il or i2 or i3)

case ({sl, s0))

2'd0 : out = 10;

2'dl : out =1l

2'd2 : out =12;

2'd3 : out =13;

default: $display("Invalid control signals");
endcase

endmodule

1 : 4 Demultiplexer

module demultiplexerl-to-4 (out0, outl, out2, out3, in, sl, s0);
output out0, outl, out2, out3;

reg out0, outl, out2, out3;

input in;

input sl, s0;

ilways @(sl or sO or in)

case ({sl, s0))

2 'b00 :

begin: out0 = in; outl = I'bz; out2 = I'bz; out3 = I'bz; end

2'b01 : begin out0 = I'bz; outl = in; out2 = 1'bz; out3 = I'bz; end
2'bl0 : begin out0 = I'bz; outl = 1'bz; out2 = in; out3 = 1'bz; end
2'bll : begin out0 = I'bz; outl = 1'bz; out2 = 1'bz; out3 = in; end
2'bx0, 2'bxl, 2'bxz, 2'bxx, 2'bOx, 2'blx, 2'bzX :

begin

outO = 1'bx; outl = 1'bx; out2 = 1'bx; out3 = I'bx;

end

2'bz0, 2'bzl, 2'bzz, 2'bOz, 2'blz :

begin

ou0 = 1'bz; outl = I'bz; out2 = I'bz; out3 = I'bz;

end

default: $display("Unspecified control signals");

end case

endmodule

Account for unknown signals on select.
» If any select signal is then outputs are x.
» If any select signal is z, outputs are z.
» If one is x and the other is z, x gets higher priority.

casex, casez Keywords

There are two variations of the case statement. They are denoted by keywords, casex and casez.

casez treats all z values in the case alternatives or the case expression as don't cares. All bit
positions with z can also represented by ? in that position.

casex treats all x and z values in the case item or the case expression as don't cares.

The use of casex and casez allows comparison of only non-X or -z positions in the case expression
and the case alternatives.

Example:

}eg [3 : 0] encoding;

integer state;

casex (encoding) //logic value X represents a don't care bit
4'blxxx : next-state = 3;

4'bxIxx : next-state = 2;

4'bxxIx : next-state = 1;

4'bxxxl : next-state = 0;
default : next-state = 0;
endcase

Thus, an input encoding = 4'bl0xz would cause next-state = 3 to be executed.

Loops
There are four types of looping statements
» while
» for
» repeat and
» Forever
While Loop
The keyword while is used to specify this loop. The while loop executes until the while-

expression becomes false. If multiple statements are to be executed in the loop, they must be

grouped typically using keywords begin and end.
Example:

Example 1: Increment count from 0 to 127. Exit at count 128.

integer count;
initial
begin
count = 0;
while (count < 128) //Execute loop till count is 127. Exit at count 128
begin
$display ("Count = %d" , count) ;
count = count + 1;
end
end
Example 2: Find the first bit with a value 1 in flag
'define TRUE I'bl';
'define FALSE I'b0;
reg [15:0] flag;

integer i //integer to keep count
reg continue;
initial
begin
flag = 16'b 0010~0000~0000~0000;
1=0;
continue = '"TRUE;

while((i < 16) && continue) //Multiple conditions using operators.
begin
if (flag [i])
begin
$display("Encountered a TRUE bit at element number %d", 1);
continue = 'FALSE;
end
=i+l
end

end

For Loop
The keyword for is used to specify this loop. The for loop contains three parts:

e An initial condition
e A check to see if the terminating condition is true
e A procedural assignment to change value of the control variable
Example:
integer count;
initial
for (count=0; count < 128; count = count + 1)

$display("Count = %do, count);

for loops can also be used to initialize an array or memory.

Example:
'define MAX-STATES 32

integer state [O: 'MAX-STATES-I]; //Integer array state with elements 0: 31

integer i,

initial

begin

for(1=0; 1<32; i=1+2) //initialize all even locations with 0
state[il = 0;

for(i=1; 1<32; i=1+2) //initialize all odd locations with 1
state [11=1;

end

Repeat Loop

The keyword repeat is used for this loop. The repeat construct executes the loop a fixed number of
times. A repeat construct cannot be used to loop on a general logical expression. A repeat
construct must contain a number, which can be a constant, a variable or a signal value.

Example:

//Examplel : incrernent and display count from 0 to 127

integer count;

initial
begin
count = 0;
repeat (128)
begin

$display("Count = %d", count);
count = count + 1;
end

end

//Example 2 : Data buffer module

//After it receives a data-start signal. Reads data for next 8 cycles.
parameter cycles = 8§;
input data-start;
input [15:01 data;
input clock;
reg [15:0] buffer [0:7];
integer i,
always @(posedge clock)
begin
if(data-start) //data start signal is true
begin
1=0;
repeat(cycles) //Store data at the posedge of next 8 clock cycles
begin
@(posedge clock) buffer[1 | = data; //waits till next posedge to latch data
1=i+];
end
end
end

endmodule

Forever loop

The keyword forever is used to express this loop. The loop does not contain any expression and
executes forever until the $finish task is encountered. The loop is equivalent to a while loop with
an expression that always evaluates to true, A forever loop can be exited by use of the disable
statement.

//Example 1: Clock generation

//Use forever loop instead of always block

reg clock;

initial

begin

clock =1'bO;

forever #10 clock = -clock; //Clock with period of 20 unit

end

//Example 2: Synchronize two register values at everv positive edge of clock

reg clock;
reg xy;
initial

forever @(posedge clock) x =y;

Dataflow Modeling

Dataflow modeling describes hardware in terms of the flow of data from input to output.

Continuous Assignment

The continuous assignment statement is the main construct of dataflow modeling and is used to assign
value to the net. It starts with the keyword assign.

General syntax is:
<continuous-assign> : : = assign <drive-strength>?<delay>? <list-of-assignments>;

Continuous assignments have the following characteristics.

o Continuous assignments are always active. That is the LHS net value changes as soon as the
value of any operand in the RHS changes.

e The LHS of an assignment should be either scalar or vector nets or a concatenation of both.
Registers are not applicable on the LHS.

e The RHS of the assignment can be register, net, or function calls of scalar or vector type.

e Delays can be specified.

Examples of Continuous Assignment
1. // Continuous assign. out is a net. il and i2 are nets

assign out =il & i2;
2. // Continuous assign for vector nets. addr is a 16-bit vector net
assign addr[15:0] = addrl_bits[15:0] ~ addr2_bits[15:0];
3. // Concatenation. Left-hand side is a concatenation of a scalar
assign {c-out, sum[3:0]) = a[3:0] + b[3:01 + c-in;
Implicit Continuous Assignment
Instead of declaring a net and then writing a continuous assignment on the net, a continuous
assignment can be placed on a net when it is declared.
Example:
//Regular continuous assignment
wire out;
assign out = inl & in2;
//Same effect is achieved by an implicit continuous assignment
wire out =inl & in2;
Delays

Three ways of specifying delays in continuous assignment statements are

1. Regular assignment delay,
2. 1implicit continuous assignment delay, and
3. net declaration delay.

Regular Assignment Delay
A delay value in the continuous assignment statement is assigned first. The delay value is specified
after the keyword assign.
Example:
assign #10 out = inl & in2; // Delay in a continuous assign
e Any change in values of in/ or in2 will result in a delay of 10 time units before recomputation
of the expression in/ & in2, and the result will be assigned to out.
e If inl or in2 changes value again before 10 time units when the result propagates to out, the
values of in/ and in2 at the time of recomputation are considered.
This property is called inertial delay. An input pulse that is shorter than the delay of the assignment

statement does not propagate to the output.

\

In2

out

Time 10 20 30 60 70 80 85

Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay and an
assignment on the net.

Example:

wire #10 out = inl & in2;

//same as
wire out;
assign #10 out = inl & in2;

Expressions, Operators, and Operands:

Expressions:
Expressions are constructs that combine operators and operands to produce a result.

Examples:

e a&b

e addrl[20:17] + addr2[20:17]

e inl |in2

Operands:

Operands can be any one of the data types. They can be constants, integers, real numbers, nets,

registers, times, bit-select etc.,
Example:

1. integer count, final-count;
final-count = count + 1

2. reala,b,c;
c=a-Db; etc.,

Operators

Verilog has Ten different types of operators. They are

1. Arithmetic

2. Logical

3. Relational

4. Equality

5. Bitwise logical

1. Arithmetic Operators

There are two types of arithmetic operators:

e binary and
e Unary.

Binary arithmetic operators are

1. Multiply (*),

2. divide (/),

3. add +),

4. subtract (-)and
5. modulus (%).

Reduction

6

7. Shift operators
8. Concatenation
9

Replication

10. Conditional

Example:

If A =4'b0011; B

a) A*B (ans:
b) D /E (ans:
c) A +B (Ans:
d) B—A (ans:

=4'b0100; D =6; E =4;

4'b1100)
Evaluates to 1)
4'b0111)
4'b0001S

determine

If any operand bit has a value x, then the result of the entire expression is X.

Example:
inl = 4'bl0lx;
in2 = 4'bl010;

sum = inl +in2; // sum will be evaluated to the value 4'bx

Modulus operators produce the remainder from the division of two numbers.

Example:
13% 3 // Evaluates to 1
16 % 4 // Evaluates to 0

-7 % 2 // Evaluates to -1, takes sign of the first operand
7% -2 // Evaluates to +1, takes sign of the first operand

Unary operators
The operators + and - can also work as unary operators. They are used to specify the positive or

negative sign of the operand
Example:

-4 // Negative 4

+5 // Positive 5

2. Logical Operators
Logical operators are logical-and (& &), logical-or (| |) and logical-not (!). Operators && and
| | are binary operators. Operator ! is a unary operator.
Logical operators follow the following conditions —
» Logical operators always evaluate to a 1-bit value, 0 (false), 1 (true), or X
» If an operand is not equal to zero, it is equivalent to a logical 1 (true condition). If it is equal to
zero, it is equivalent to a logical 0 (false condition). If any operand bit is X or z, it is equivalent

to X (ambiguous condition).

Example:
I. A=4’b0011;B =4"b0000;
a) A&&B // Evaluates to 0.
b) A||B // Evaluates to 1.
c) 'A / / Evaluates to 0.

d) !'B// Evaluates to 1
II. A=2b0x;B=2l0;
A && B // Evaluates to X.
. (a==2)&& (b==3) // Evaluates to 1 if both a ==2 and b = = 3 are true.
// Evaluates to 0 if either is false.

3. Relational Operators

Relational operators are -
» greater-than (>),
» less-than (<)
» greater-than-or-equal-to (>=) and
» less-than-or-equal-to (<=)
Example:
If A=4,B=3
X =411010,Y =4'b1101, Z = 4'blxxx then evaluate
a) A<=B // Evaluates to a logical 0

b) A>B // Evaluates to a logical 1
c) Y>=X // Evaluates to a logical 1
d Y<Z // Evaluates to an X

4. Equality Operators

Equality operators are logical equality (==), logical inequality (= =),case equality (===), and case
inequality (1= =) When used in an expression, equality operators return logical value 1 if true, 0 if
false. These operators compare the two operands bit by bit, with zero filling if the operands are of

unequal length.

Expression Description Possible Logical
Value

a==b a equal to b, result unknown if X orzinaorb 0,1, X

al=b a not equal to b, result unknown if X orzinaorb 0,1, X

a===b a equal to b, including X and z 0,1

al==>b a not equal to b, including X and z 0,1

Problems:

A=4,B=3

X=4’b1010; Y =4’b1011;

Z=4blxxz; M=4’blxxz; N =4’blxxx;

A == B // Results in logical 0

X =Y // Results in logical 1

X ==Z// Results in X

Z === M //~esults in logical 1 (all bits match, including X and z)

z === N //~esults in logical 0 (least significant bit does not match)

M !== N // Results in logical 1

5. Bitwise Operators

Bitwise operators are
> negation (~),

and(&),
or(]|)
xor ()

xnor (~~,~")).

vV v V Vv

Bitwise operators perform a bit-by-bit operation on two operands. They take each bit in one operand
and perform the operation with the corresponding bit in the other operand. If one operand is shorter

than the other, it will be bit extended with zeros to match the length of the longer operand.

Example:

X=4"b1010; Y=4"bl1101; Z=4"bl0x1;
~X // Negation. Result is 4'b0101
X&Y // Bitwise and. Result is 4'b1000
XY // Bitwise or. Result is 4'blll1

X Y // Bitwise xor. Result is 4'bOlll
XM~Y // Bitwise xnor. Result is 4'b1000
X&Z // Result is 4'bl0x0

6. Reduction Operators

Reduction operators are

and (&), nor (~|),
nand(~ &), xor (), and
or(|), xnor (~).

Reduction operators take only one operand. Reduction operators perform a bitwise operation on a
single vector operand and yield a I-bit result.
Example:
X=4’bl010
&X //Equivalentto 1 & 0 & 1 & 0. Results in 1'b0
X //equivalent to 1|0 | 1| 0. Results in 1'bl
AX //Equivalentto1 "0 A 1" 0. Results in 1'b0
7. Shift Operators

Shift operators are
» right shift (>>) and
¥ left shift (<<).
These operators shift a vector operand to the right or the left by a specified number of bits

Example:
X=4’b 1100

Y =X>>1;//Y is 4'b0110.Shift right 1 bit.0 is filled in MSB position
Y =X << 1; //Y is 4'bl000.Shift left 1 bit.0 filled in LSB position.
Y = X << 2;//Y is 4'b0000.Shift left 2 bits.

8. Concatenation Operator

The concatenation operator ({,) provides a mechanism to append multiple operands. The operands
must be sized. Concatenations are expressed as operands within braces, with commas separating the
operands.

Example:

IfA=1bl, B=2b00, C=2b10, D=3"ll0

Then what is

Y={B,C} // Result Y is 4'b0010
Y={A,B,C,D,3b00l) // Result Y is 11'b10010110001
Y ={A,BJ[0], C[1] 1} // Result Y is 3'bl01

9. Replication Operator

Repetitive concatenation of the same number can be expressed by using a replication constant. A
replication constant specifies how many times to replicate the number inside the brackets ({ }).
Example:

Let reg A;

reg [1:0] B, C;

reg [2:0] D;

A =1Dl; B=2'b00; C = 2'bl0; D = 3'bll0;

Y ={4{A)} // Result Y is 4'bllll

Y ={4{A},2{B} } //ResultYis 8bl1110000

Y={4{A},2{B},C} // Result Y is 10'b1111000010

10. Conditional Operator

The conditional operator(? :) takes three operands.
Usage: condition-expr ? true-expr : false-expr ;
The condition expression (condition-expr) is first evaluated.

» If the result is true (logical 1),then the true-expr is evaluated.

» If the result is false (logical 0), then the false-expr is evaluated.

» If the result is X (ambiguous), then both true-expr and false-expr are evaluated and their results
are compared, bit by bit, to return for each bit position an X if the bits are different and the
value of the bits if they are the same

Conditional operations can be nested. Each true-expr or false-expr can itself be a conditional

operation.

Example:

Consider 4 —to — 1 multiplexer.

Let (A==3) and control are the two select signals of 4-to-1 multiplexer with n, m, y, x as the inputs and
out as the output signal.

Then assign out = (A ==3) ? (control ? x:y): (control ? m : n) ;

Example:

Write the Verilog code for 4-to-1 Multiplexer, Using Conditional Operators
module multiplexer4-to-1 (out, i0, il, i2, i3, sl, s0);

output out;

input 10, il, 12, 13;

input sl, sO;

assign out=s1? (S0 ?i3:i2): (SO ?il:i0);

endmodule ;

11.Precedence of operators :

Operators Precedence

" If no parentheses are used to separate operands then Verilog uses
the following rules of precedence: (good practice: use parentheses)
Operators Operators Symbols
Unary +-1~ Highest Precedence
Multiply, Divide, Modulus | * /%
Add, Subtract +=
Shift << >> >>>
Relational SS= s
Equality ==l====I==
Reduction &, ~&, " |,
Logical & &
Conditional 2 Lowest Precedence

Summary of operators in Verilog:

Type of Operator Description Number
operation symbol of operands
Arithmetic + addition 2

- subtraction 2

* multiplication 2

/ division 2

% modulus 2

*% exponentiation 2
Shift >3 logical right shift 2

<< logical left shift 2

p3 arithmetic right shift 2

<<< logical left shift 2
Relational > greater than 2

< less than 2

>= greater than or equal to 2

<= less than or equal to 2
Equality == equality 2

I= inequality 2

=== case equality 2

la= case inequality 2
Bitwise " bitwise negation 1

E bitwise and 2

| bitwise or 2

o bitwise xor 2
Reduction] reduction and 1

I reduction or 1

= reduction xor 1
Logical ! logical negation 1

Bk logical and 2

| logical or 2
Concatenation { } concatenation any

{{}} nreplication any
Conditional T conditional 3

Examples:

Write Verilog code for 4-to-1 Multiplexer using data flow modelling

Method 1: using logic equation

S1 SO

> D>

&S1n Son_—
i0 —
. —
o — -yl —_
i1 — ouT
[J
- | _y2 —_
i2 —__
° . _ _y3
D3 —

module mux4-to-1 (out, 10, 1l, 12, 13, sl, s0);
output out;

input 10, il, i2, 13;

input sl, sO;

assign out = (~sl & ~s0 & i0) | (~s] & sO & il) | (s] & ~s0 & i2) | (sl & s0 & i3) ;
endmodule.

Method 2: Using Conditional Operators

module multiplexer4-to-1 (out, i0, il, i2, i3, sl, s0);
output out;

input 10, 1, 12, 13;

input sl, s0;

assign out=s1? (S0 ?i3:i2): (SO ?il:i0);

endmodule

Write Verilog code for 4 Bit Full Adder using data flow modelling

Method 1: Using Dataflow Operators

X0 viop Xp1gooYDyoo X[El Y2l o X3 Y3

| | | |

full full full full

c_ins Adder % Adder | ¥ Adder | ¥ Adder

AD A1 A A

| |
SLIM[O] SLUM[1] SUM[2] SUM[3]
4 bit Adder

module fulladd4 (sum, c-out, x, y, c-in);

output [3:0] sum;

output c-out;

iput [3: 0] X, y;

input c-in;

assign {c-out, sum) = x +y + c-in;

endmodule

Method 2: full adder with carry look ahead

= C out

e
e ‘)D_ SUME)
i [
A3
) D P(2) N
e —)Di SUM@)
B(2) — 6(2)
A(2)
P(1) N
> o) s
A1)
Pig) N
D & D— SUM(0)
B(D) — 60
A(D)
PO Generator Carry Generator Sum Generator

module fulladd4(sum, c-out, a, b, c-in);

output [3:0] sum;

4 -bit CRY LooK-AMEAD ADDER g
P - A®E. G, * BB |
Py = Ay®B, G, - Ay
P,=A®8, Gp= PiBs
Fy - A28, Gy = AyBy
5, =P, ®C, G
g «Pog s |
5, h®G
S, 2@,y
G= PCot G

G 0G+ 6 = PLhG+6)+ Gy
Cam .G 4Gy = Pty 40,4,+AP.C) + G
Ca= P:}C.L'*'C’I!

"R G+ Prby+ PG, + P PFC)+ G,

output c-out;
input [3:0] a,b;

input c-in;

wire p0,g0, pl, g1, , p2, g2, , p3, g3;

wire c4, c3, c2, cl;

assign p0 =a[0] ~ b[0],
pl=a[l] ~ b[1],
p2 = a[2] * b[2],
p3=a[3] * b[3];

assign g0 =a[0] & b[0],
gl =a[l] &b[1],
g2 =a[2] & b[2],
g3 =a[3] & b[3];

assign cl =g0 | (p0 & c-in);
c2=gl|(pl & g0)|(pl & p0 & c-in);
c3=g2|(p2&gl)|(p2 & p0 & c-in) | (p2 & pl & p0 & c-in);
cA=g3|(P3&g2) | (P3 &p2&gl)|(p3 &p2 & p0&c-in) | (p3 & p2 &pl &
p0 & c-in);

assign sum[0] = p0 * c-in;

assign c-out = c4;

endmodule

UNIT 2:

Gate-Level Modelling

In gate level modelling the circuit is described in terms of gates (e.g., and, nand).
Gate Types

A logic circuit can be designed by use of logic gates. In Verilog the basic logic gates are defined as

predefined primitives. There are two types of basic gates:

e And/or gates and
e Buf /not gates.

And / Or Gates

And /or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate
terminals is an output and the other terminals are inputs. The output of a gate is evaluated as soon as

one of the inputs changes. The inbuilt gate primitives are

and nand Xnor
or nor
not Xor

The logic symbol and truth table of these gates are as shown below:

and gate: nand gate
12 12
and 0 1 X | z nand 0 1 X | z
0 0 0 00 0 1 1 1
11 1 0 1 X | X 11 1 1 0 x | x
X 0 X X | X X 1 X X | x
z 0 X X | x y/ 1 X X | X
or gate nor gate
12 2
or 1 X112 nor 0 1 X | z
0 I | x|x 0 1 0 | x|x
n 1 L 1)1 1 1 0 0 o]o
X X 1 X | x X X 0 x | x
z X 1 X | x 7z X 0 x | x

pg. 1

Xor gate xnor gate

12 12
xXor 0 1 X | z Xnor 0 1 X |z
0 0 1 X | x 0 1 0 X | x
I1 1 1 0 X | X 11 1 0 1 X | x
X X X X | x X X X X | x
z X X X | x z X X X | x

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are
shown below. In this example, for all instances, OUT is connected to the output out, and /N7 and IN2

are connected to the two inputs i1 and i2 of the gate primitives.

wire OUT, IN1, IN2;

// basic gate instantiations.
and al (OUT, IN1, IN2);
nand nal (OUT, IN1,IN2);
or orl (OUT, IN1, IN2);

nor norl (OUT, IN1,IN2);
xor xI (OUT, IN1,IN2) ;
xnor nxl (OUT, IN1, IN2) ;

The instance name does not need to be specified for primitives

Example:
and (OUT, IN1, IN2); // legal gate instantiation
Buf / Not Gates

Buf / not gates have one scalar input and one or more scalar outputs. The last terminal in the port list

is connected to the input. Other terminals are connected to the outputs.

Two basic buf/ not gate primitives are —

e buf
e not
The symbols and truth tables are as shown below
buf in out not in out
0 0 0 1
) 1 0
X X X X
7 7 Z X

NOT Gate

Input
npu Output A D: X

bufif / notif

Gates with an additional control signal on buf and not gates are also available. The primitives are

Bufif 1 notif 1
bufif0 notif(
These gates propagate only if their control signal is asserted. They propagate z if their control signal is

deasserted. Symbols for bufif / notif are shown below

Figure 5-3. Gates Bufif and Notif

in 1\ out in out
ctrl j/ ctrl
bufifl notif’l
in ™S~ out in out
ctrl ‘{:?/ strl
bufif notifl)

pg. 3

ctrl ctrl
bufifl | 1 % 7 bufifll | | % ¥
0 z 0 L L) 0 z L L
_ . ' A 1 H H
- | F | H H in I z
X z X X X X X z X X
Z ' % X % i X 7 X b
ctrl ctrl
notifl | g | x z notifl | g I x oz
) z 1 H H] I z H H
- . 0 7 L
i 1 | = 0 L L in | z L
X i x X X X X = X X
Fa Y X X 4 X F X X
Examples of instantiation of bufif and notif gates.
//Instantiation of bufif gates.
bufifl bl (out, in, ctrl) ;
bufif0 b0 (out, in, ctrl) ;
//Tnstantiation of notif gates
notifl nl (out, in, ctrl) ;
notif0 no (out, in, ctrl) ;
Example 1: Multiplexer 4:1
The Verilog code for 4 : 1 multiplexer is as shown below .
The 1/0 diagram and the truth table for the multiplexer are shown
I3 ——
ut
I, — ax1 [Input| S1 | SO | Y
1, —— Multiplexer
o o | 0| I
g —> Lo | 1| L
T T b |1 0 I,
3 11 |1 | L
51 SU

pg- 4

The logic diagram for the multiplexer is shown below.
S1 SO

—>0——>0

S1n SO0p_—

D3

The Verilog description for the multiplexer is shown below;

module mux4-to-1 (out, iO, il, i2, i3, sl,
output out;

input i0O, il, i2, i3;
input sl, SO;

wire sln, son;

wire y0,yl, y2, y3;

not (sln, sl) ;

not (sOn, SO0);

and (yO0, iO, sln, sOn);
and (yl, il, sln, s0);
and (y2, i2, sl1, sOn);
and (y3, i3, sl1, S0);

or (out, yO0, yl, y2, y3);

end module

il | ouT

S0);

This multiplexer can be tested with the stimulus as shown below.

Stimulus for Multiplexer

pg. 5

// Define the stimulus module (no ports)

module stimulus;

// Declare variables to be connected to inputs

reg INO, IN1, IN2, IN3;

reg S1, SO;

// Declare output wire

wire OUTPUT;

// Instantiate the multiplexer

mux4-to-1 mymux (OUTPUT, INO, IN1, IN2, IN3, S1, SO) ;

// define the stimulus module (no ports)

// Stimulate the inputs

initial

begin

// set input lines

INO=1;IN1=0; IN2=1;IN3 =0;

#1 Sdisplay("INO= %b, IN1= %b, IN2= %b, IN3= %b\n , INO, IN1, IN2, IN3);
// choose INO

S1=10; S0 =0;

#1 Sdisplay("'Sl = %b, S0= %b, OUTPUT = %b/n, S1, S0, OUTPUT);
// choose IN1

S1=0;S0=1;

#1 Sdisplay ("'S1= %b, SO0 = %b, OUTPUT = %b \n", S1, SO, OUTPUT);
// choose IN2

S1=1; S0=0;

#1 $display("'SI = %b, S0 = %b, OUTPUT = %b \n, S1, S0, OUTPUT);
// choose IN3

S1=1;SO0=1;

#1 Sdisplay("'S1 = %b, S0 = %b, OUTPUT = %b \n, S1, S0, OUTPUT);
End

endmodule

The output of the simulation is displayed as shown below

INO=1, IN1=0, IN2= 1, IN3=0

S1=0, SO=0, OUTPUT =1

S1=0, SO=1, OUTPUT =0

S1=1, SO=0, OUTPUT =1

pg. 6

S1=1, SO=1, OUTPUT =0

Example 2: 1-bit full adder:

The logic diagram for a I-bit full adder is shown below:

in0 . \ S0
in1 1] Sum
%]
Co
C in

The Verilog description is given below:

module fulladd(sum, c-out, a, b, c-in) ;
output sum, c-out;

input a, b, c-in;

wire S0, C0, C1;

xor (SO0, a, b);

and (CO0, a, b);

xor (sum, S0, c-in) ;

and (C1, SO0, c-in);

or (c-out, CO, Cl);

endmodule

Example 3: 4-bit full adder:

X[o] Y[O Xp] Y[X[2] Y[2] X[3] Y[3
| | |

) full 1 full 2 full e full
C_IN—s Adder = Adder Adder “& Adder +C_out
AD A AZ AG
|
SLIM[O] SUMI1] SUM[2] SUM[3]
4 bit Adder

A0, A1, A2 and A3 are instances of the module full add. The Verilog code for the above circuit is as

shown below.

module fulladd4(sum, c-out, x, y, c-in);
//'1/O port declarations
output [3:01 sum;

pg. 7

output c-out;

input [3 : 01 a, b;

input c-in;

// Internal nets

wire cl, ¢2, ¢3;

// Instantiate four I-bit full adders.

fulladd AO (sum[O0l, cl, x[0], y[0], c-in);
fulladd A1 (sum[l], c2, x[1], y[1] cl);
fulladd A2 (surn[2], c3, x[2], y[2], c2);

fulladd A3 (sum[3], c-out, x[3], b[3], c3);

endmodule

The design is checked by applying stimulus.

// Define the stimulus (top level module)
module stimulus;

reg [3:0] X, Y;

reg C-IN;

wire [3:0] SUM;

wire C-OUT;

// Instantiate the 4-bit full adder. call it FA1-4
fulladd4 FA1 _4(SUM, C-OUT, X, Y, C-IN) ;
// Setu~ the monitorins for the sisnal values
initial

begin

$monitor($time," A= %b, B=%b, C-IN= %D, --- C-OUT= %b, SUM= %b\n’,
A, B, C-IN, C-OUT, SUM);

end

// Stimulate inputs

initial

begin

A =4'd0; B=4'd0; C-IN=1D0;

#5 A=4’d3, B=4d4;
#5 A=4’d2, B=4ds;

#5 A=4’d9, B=4d9;

pg. 8

#5 A=4d10, B=4dl5;
A =4'd10; B=4'd5; C-IN=1Dl;

end
endmodule
The output of the simulation is shown below.

0 A= 0000, B=0000, C-IN= 0, --- C-OUT= 0, SUM= 0000
5A=0011, B=0100, C-IN= 0, --- C-OUT= 0, SUM= 0111
10 A=0010, B=0101, C-IN=0, --- C-OUT= 0, SUM= 0111
15 A=1001, B=1001, C-IN=0, --- C-OUT= 1, SUM= 0010
20 A= 1010, B=l1lll, C-IN=0, --- C-OUT= 1, SUM= 1001

25 A=1010, B=0101, C-IN=/, C-OUT= 1, SUM= 0000

Gate Delays

In real circuits, logic gates have delays associated with them.

There are three types of delays from the inputs to the output of a primitive gate.
e Rise delay
e Fall delay

e Turn-off delay

Rise, Fall, Turn-off delays

Rise delay
The time taken for the output of a

0.x.orzto 1 gate to change from some value to 1
“ is called a rise delay.

«—
t rise

Fall delay
1,x,orzto0 \ The time taken for the output of a

gate to change from some value to 0
is called a fall delay

—
t_fall

Turn-off delay:
The time taken for the output of a

0,1,orxtoz gate to change from some value to
high impedance (z) is called turn-off
delay.

!

t_turnoff

pg. 9

» If the value changes to X, the minimum of the three delays is considered, Three types of delay
specifications are allowed.
» If only one delay is specified, this value is used for all transitions.
Example:
Delay of delay-time for all transitions,
Syntax:
and #(delay-time) al (out, il, i2);
and #(5) al (out, il, i2); //Delay of 5 for all transitions
» If two delays are specified, they refer to the rise and fall delay values.
Example:
Rise and Fall Delay Specification.
Syntax
and # (rise-val, fall-val) a2 (out, il, i2)
and #(4,6) a2(out, il, i2); // Rise = 4, Fall = 6;

» Ifall three delays are specified, they refer to rise, fall, and turn-off delay values.
Example:
// Rise, Fall, and Turn-off Delay Specification
Syntax
Bufif() #(rise-val, fall-val, turnoff-val) bl (out, in, control);

buf if0 # (3,4,5)b 1 (out,i n, control); // ~ise= 3, Fall = 4, Turn-off =5

Min / Typ / Max Values

For each type of delay-rise, fall, and turn-off-three values, min, typ, and max, can be specified. Any
one value can be chosen at the start of the simulation.

Min value

The min value is the minimum delay value that the designer expects the gate to have.

Max value

The max value is the maximum delay value that the designer expects the gate to have.

Min, typ, or max values can be chosen at Verilog run time. Method of choosing a min/typ/max value
may vary for different simulators or operating systems. If no option is specified, the typical delay
value is the default.

Examples of min, typ, and max value specification is given below.

// One delay

and #(4:5:6) al(out, il, 12);

// if +mindelays, delay= 4

pg. 10

// if +typdelays, delay= 5
// if +maxdelays, delay= 6

/' Two delays

and #(3:4:5, 5:6:7) a2(out, 1, 12);

// if +mindelays, rise= 3, fall= 5, turn-off = min (3,5)
// if +typdelays, rise= 4, fall= 6, turn-off = min (4,6)
// if +maxdelays, rise= 5, fall= 7, turn-off = min (5,7)

// Three delays

and #(2:3:4, 3:4:5, 4:5:6) a3(out, il,i2);

// if +mindelays, rise= 2 fall= 3 turn-off = 4
// if +typdelays, rise= 3 fall= 4 turn-off = 5
// if +maxdelays, rise= 4 fall= 5 turn-off = 6

Delay Example

Consider the equation
out =(a.b) +c
The logic diagram for the above equation is as shown below. The gate-level implementation is shown

below.

module D (out, a, b, ¢);

output out;

input a,b,c;

wire €;

and # (5) al (e, a, b) ; //Delay of 5 on gate al
or #(4) ol(out, e,c); //Delay of 4 on gate 01

endmodule

This module is tested by the stimulus file shown below
module stimulus

reg A, B, C;

wire OUT;

D dI(OUT, A, B, C);

// Stimulate the inputs. Finish the simulation at 40 time units

pg. 11

initial

begin

A=110; B=1b0O; C=1bO;
#10 A= 1'bl; B=1bl; C=1'bl;
#10 A= 1bl; B=1b0O; C=1'00;
#20 S$finish;

end

endmodule

pg. 12

Operators in C

An operator is a symbol that tells the computer to perform certain mathematical or logical manipulations.
The C operators can be classified into the following categories-

Arithmetic operators

Relational operators

Logical operators

Assignment operators

Increment and decrement operators
Bitwise operators

NNk WD =

Special operators

1. Arithmetic operators

These operators are used for numerical calculations (or) to perform arithmetic operations. There are
two types of mathematical operators: unary and binary. Unary operators perform an action with a single
operand. Binary operators perform actions with two operands.

Operators Meanings When both the operands in a single
; Addition or unary plus arlthmeFlc .expressmn' are mtegers,' the
expression is called an integer expression.
Subtraction or unary minus Example:
p Multiolicati Ifa=14 and b=4
ultiplication
P a+tb=18;
/ Division a-b=14;
a*b=156;
% Modulo division a/b=3;
a% b=2;

Real arithmetic
An arithmetic operation involving only real operands is called real arithmetic. Since floating point values
are rounded to the number of significant digits permissible, the final value of the correct result.

Example:
If x, y and z are floats, then

x=6.0/7.0 =0.857143

y=1.0/3.0 =0.333333

z=-2.0/3.0 =-0.66667

Mixed mode arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed mode
arithmetic expression. If either operand is of the real type, then only the real operation is performed and
the result is always a real number.

Example:
15/10.0 = 10. 5 where as

15/10 =1.

2. Relational operators:

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if
the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example
== Equal to 5==31sevaluated to 0
> Greater than 5> 3 is evaluated to 1 3
< Less than 5 <3 is evaluated to 0 3:
I= Not equal to 5 1=3is evaluated to 1 3.
>= Greater than or equal to 5>=3is evaluated to 1 3
<= Less than or equal to 5 <=3 isevaluated to 0 3.

Logical operators

An expression containing logical operator returns either 0 or 1 depending upon whether expression results
true or false. These are used to combine 2 (or) more expressions logically. They are

logical AND (& &)
logical OR (||) and
logical NOT (!)

Operator Meaning Example
&& Logical AND. If c =5 and d = 2 then,
True only if all operands are true expression ((c==5) && (d>5)) equals to 0.
I Logical OR. If c=5and d = 2 then,
True only if either one operand is true | expression ((c==5) || (d>5)) equals to 1.
! Logical NOT. If ¢ =5 then,
True only if the operand is 0 expression !(c==5) equals to 0.

4. Assignment operators

An assignment operator is used for assigning a value to a variable. When two quantities are compared
depending on their relation the values are assigned.

Operator Example Same as
= a=>b a=>b

+= at=b a=atb

-= a-=b a=a-b

= a=b a=a*b

/= a/=b a=a/b

%= a%=b a=a%pb

Example:

If a=5, then

c=a; //cis s

ct+=a; //cis 10
c-=a; /lcis 5
c *=a; /I cis25
c/=a; //cis s
¢ %= a; //c=0

5. Increment and decrement operators

C programming has two operators
e increment + + and
e decrement - - to change the value of an operand by 1.
Increment + + increases the value by 1 whereas decrement - - decreases the value by 1. These two

operators are unary operators, meaning they only operate on a single operand.
Increment operator:

There are two types —

e pre increment

e post increment
If we place the increment operator before the operand, then it is pre-increment. Later on, the value is

first incremented and next operation is performed on it.

Example:
z = ++a; /[a= a+1
Z=a

Ifa=10, then z=++ a gives
z=11
a=11

If we place the increment operator after the operand, then it is post increment and the value is
incremented after the operation is performed.

Example:
Z=a+t++; /| z=a
a=a+l

Ifa=10, then z= a++ gives
z=10
a=11

Decrement operator:

It is used to decrement the values of a variable by 1.

The two types are —

e pre decrement

e post decrement

If the decrement operator is placed before the operand, then it is called pre decrement. Here, the value is
first decremented and then, operation is performed on it.

Example:

z=--a;// a=a-1

z=a

Ifa=10,thenz=-- a gives

z=9

a=9

If the decrement operator is placed after the operand, then it is called post decrement. Here, the value is

decremented after the operation is performed.

Example:

z=a--;// z=a

a=a-1

Ifa=10,thenz=a- - gives
z=10

a=9.

6. Conditional operator (? :)

It is also called ternary operator.

The syntax is as follows -

expl? exp2: exp3

The operator ?: works as follows: expl is evaluated first. If it is true, then the exp2 is evaluated and

becomes the value of the expression.

If expl is false, exp3 is evaluated and its value becomes the value of the expression.
Example:

a=10;

b =15;

x=(a>b)? a: b;

If (a>Db)

X = a;

else

X =b;

7. Bitwise operators:

Bitwise operators operate on bits.

Example: A=60= 0011 1100 and
B=13=0000 1101

Bitwise AND(&)
Bitwise AND Operator copies a bit to the result if it exists

in hath nnarandc

Operator Description
& Bitwise AND
| Bitwise OR
A Bitwise XOR
<< Left Shift
>> Right shift
~ One's Complement

Bitwise XOR (%).
Binary XOR Operator copies the bit if it is set in one operand but not both.
(A~ B)=49,i.e.,0011 0001

One's Complement (~):

Binary One's Complement Operator is unary and has the effect of 'flipping' bits. Meaning, all the Os
become Is and vice-versa.

(~A) = ~(60), i.e,. 0111101

Left Shift (<<)
Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the

right operand.
A <<2=2401i.e.,1111 0000

Right shift(>>)

Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the
right operand.

A>>2=15i.e., 0000 1111.

8. Special operators:

Some of the special operators are Comma operator, Sizeof operator, pointer operator (& and *) and
member selection operator (. and ->).

Comma Operator:

The Comma operator is used to link the related expressions together. |t evaluates first operand and then
discards the result of the same, then the second operand is evaluated and result of same is returned. The
comma linked list of expressions are evaluated left to right and the value of right most expression is the

value of combined expression.

Example:
value = (x =10, y = 5, x+y);

First assigns the value 10 to x, then 5 to y and finally assigns 15 to value.

Sizeof operator:

The sizeof is a unary operator that returns the size of data (constants, variables, array, structure, etc).
Example:

sizeof(a),where a is integer, will return 4.

sizeof(b), where b is float, will return 4.

sizeof(c), where c is double, will return 8.

sizeof(d), where d is integer, will return 1.

Arithmetic expressions:

An expression is a combination of operators. constants and variables. An expression may consist of one

or more operands. and zero or more operators to produce a value.

Types of Expressions in C
e Arithmetic expressions.
o Relational expressions.
e Logical expressions.
o Conditional expressions.

An arithmetic expression in ¢ is a combination of variables, constants, and operators arranged as per the
syntax of the language. C can handle any complex mathematical expressions.

Example:

Algebraic Expression C Expression
axb-c a*b-c
(m+n)(x+y) (m+n)*(x+y)
ab/c (a*b) /¢
3x? +2x + 1 B*x*x)+(2*x)+1
x/y+c x/y+c

Precedence of Arithmetic Operators

Operators Operations Order Precedence
@) Parentheses Evaluated first.
*1 % Multiplication, Division, Remainder | Evaluated second
+— Addition, Subtraction Evaluated third.
= Assignment Evaluated last
Example:

Consider following statements:

x=a-b/3+c*2-1;

Assume a =10, b = 12, ¢ = 2, the statement becomes
x=10-12/3 +2 * 2 -1 is evaluated is as follows

Stepl :x=10-4+2*2-1 (Division is Evaluated 12 /3 =4)
Step2:x=10-4+4-1 (Multiplication is Evaluated 2 * 2 = 4)

Step3:x =6+4-1 (Subtraction is Evaluated 10 - 4 = 6)
Step 4: x =10 -1 (Addition is Evaluated 6 +4 = 10)
Step 5: x=9 (Subtraction is Evaluated 10 - 1 =9 and Assign 9 to x)

INPUT-OUTPUT

FORMATTED INPUTS:

Formatted I/O functions are used to take various inputs from the user and display multiple outputs to the
user. These types of I/O functions can help to display the output to the user in different formats using the

format specifiers. These I/O supports all data types like int, float, char, and many more.

These functions are called formatted I/O functions because we can use format specifiers in these functions

and hence, we can format these functions according to our needs.

The Formatted input/output functions are -

scanf() — which is used to read one or multiple inputs from the user at the console.

printf() — which is used to display one or multiple values in the output to the user at the console.

Formatted input refers to the data that has been arranged in a particular format. To read data in from

standard input (keyboard), we call the scanf function. The basic form of a call to scanf is:
Inputting integer numbers:

scanf(control_string, list of variable addresses);
e The control string specifies the field format in which the data is to be entered. It contains
e format specifiers having conversion character %
e adata type character and
e An optional number specifying the field width.

e The list of variable addresses specify the address of the locations where the data is stored

The field specification for reading a number is as follows:

Scanf(“%d%d”, &num1,&num?2);

Data line is

31426, 50

Then num1 = 31426 and num2 = 50 is assigned.
Any input field may be slipped by specifying * in the place of the filed width.
Example:

Scanf(“%d%*d %d”, &numl,&num?2);

Data line
123 456 789
The output is

numl = 123
456 is skipped (because of *)
Num?2 = 789.

Inputting Real Numbers

scanf reads real numbers using the specification %f

Example:

Scanf(“% %%, &x1,&y, &z);
With the input data
475.89 43.21 E-1 678

Will assign the value 475.89 =x,4.321 =y and 678.0 =z
A number may be skipped using % *f specification

Inputting Character Strings

The '%s' is used as a format specifier for the string in ¢ language.
Example:

char color[20];

scanf('" %s", color);

Reading mixed data types
It is possible to use one scanf statement to input a data line containing mixed mode data. It should be

ensured that the input data items match the control specifications in order and type.
Example:

scanf(" %d %c %f %s", &count, &code, &ratio, name);
will read the data

15 p 4.575 coffee
Formatted output

printf function is used for printing captions and numerical results. The output should be easily
understandable and easy-to-use form.

The basic format of a printf function is:

printf (control_string, list of expressions);

The control string consists of three types of items:
e Characters that will be printed on the screen as they appear
e Format specifier that define the output format for display of each item.
e Escape sequence characters such as\ n,\\ tand \ b
Example:
printf(“programming in C”);
printf(“ ”);
printf(“\n”);
printf(“%.d” ,x);
printf(“a = %f\n b = %f, a,b);
printf(“sum =%d” ,1234);
printf(“ \n \n”);

BASIC STRUCTURE OF C PROGRAM:

BASIC STRUCTURE OF A ¢ PROGEAM: Example:
Documentation section p [/Sample Prog Created by:Bsource
[Used for Comments]
Link: section #include<stdioh>
—— Finclude<como b=
Definition section void fun():
Global declaration section
[Vardable used in move than one function] — inta=10;
mwaing) 5 voidmain()
f {
Declaration part l:_l:I.'S'?l{}.' . .
Executable part printf{"a value inside main(); %d",a);
i fun();
i
subprogram section —* void fun()
[User-defined Fuanetion) {
Funciionl printf{"na value inside fun(): %ed"a
Function 2 }
Funetion n

Documentation Section

This section consists of the description of the program, the name of the program, and the creation date
and time of the program. It is specified at the start of the program in the form of comments.
Documentation can be represented as:

/I description, name of the program, programmer name, date, time etc.

Anything written as comments will be treated as documentation of the program and this will not
interfere with the given code. Basically, it gives an overview to the reader of the program.

Link Section
The link section provides instructions to the compiler to link functions from the system library.

Example:
#include<stdio.h>
#include<math.h>

Definition section:
The definition section defines all symbolic constants. Whenever this name is encountered by the
compiler, it is replaced by the actual piece of defined code.

Example:
PI=3.14

Global Declaration Section

There are some variables that are used in more than one function. Such variables are called global
variables.

Example:
intnum = 18;
int a=7;

Main Function Section

Every C-programs must have the main() function. Each main function contains 2 parts. A declaration
part and an Execution part. The declaration part is the part where all the variables are declared. The
execution part begins with the curly brackets and ends with the curly close bracket. Both the
declaration and execution part are inside the curly braces. All statements in the declaration and

executable parts end with semicolon.

Example:

int main(void)

{

int a=10;

printf("" %d", a);

3

Sub Program Section

The subprogram section contains all the user defined functions that are called in the main
function.

Example:
int add(int a, int b)
{

returna+b;

}

fkdefhk

Character set

The character set refers to a set of all the valid characters that we can use in the source program
for forming words, expressions, and numbers. The characters in C are grouped into following
categories:

* The character set of C represents alphabet, digit or
any symbol used to represent information.

Types of characters:
| Types Character Set

Uppercase Alphabets A, B,C,..Y,Z 1. Letters

Lowercase Alphabets |a, b,c, ..y, z 2. Digits

Digits 0,1,2,3,..9 3. Special characters and
~ r N * n = b

Special syrmbols ! .@ H%AN&*() _-+=|\{}] 4. White spaces
Ngiater, Ry

White spaces Single space, tab, new line.

C tokens:

Tokens in C language are the smallest elements or the building blocks used to construct a C program.

Tvypes of Tokens

C Tokens
Constants Strings Identifiers Keywords Operators Symbols
10.00 “abc” total int + - i
99.99999 “Your Name?" interest_rate float o []
-1 if 8& {}

Tokens in C language can be classified as:
1. Keywords
2. Identifiers

3. Constants

Kevwords and identifiers:

4. Special Characters
5. Strings
6. Operators

Every C word is classified as either a keyword or identifier. Keywords have fixed meanings. They
serve as the basic building blocks for programming statements. There are 32 built-in keywords.

Identifiers refer to the names of variables, functions and arrays. These are user defined names and
consist of sequence of letters and digits with letter as first character. The underscore character can also

be used in identifiers.

Constants:

Constants are the fixed values that do not change during the execution of the program. The

classification of constants is as shown below.

Numeric Constant:

A numeric constant consists of numerals. Numeric constants are again divided into two types:

e Integer constant
¢ Real constant

Constant

N

Numeric Constant Character Constant

ANVAN

Integer Real String Character Single Character
Constant Constant Constant Constant
Example 4 786 "hello® o
0 0.0 "143"]
-20 -12.07 "hit@gmail.com" '$'

a) Integer constant:

An integer constant refers to the
sequence of digits. There are
three types of integers —

1. Decimal
2. octal
3. hexadecimal

Decimal integers consist of set of digits 0 to 9. The + or - sign is optional.

Example:
123, -321, 0, 654321, + 78 etc.

Embedded characters, commas and non digit characters are not permitted between digits.

Example:
15750, 20,000 , $ 420 etc., are illegal numbers.
An octal integer constant consists of any combination of digits from 0 to 7with a leading zero.

Example:

037,0, 0435, 0551 etc.,

The hexadecimal integer constant consists of digits from 0 to 9 and letters from A to F. here the
sequence digits must begin with 0x or 0X

Example:
0X2, 0x9F, 0Xbcd, 0X

b) Real Constant:

Integers are inadequate to represent the quantities that vary continuously. Hence these are represented
numbers containing factional part. Such numbers are called Real or Floating point constants.

Example:
215. ,0.95, -7.1, + 0.5
They can also be represented in exponential form

Example:
0.65 e4,12 e-2, 1.5 e+5, 3.18E3, -1.2E-1

Character constant:

A single character constant contains a single character enclosed within a single quotes. These character
constants are translated into ASCII code.

Example:
659 R GXQ, ‘aQ

String constants:

A string constantis a sequence of characters enclosed within double quotes. the characters may be
letters, numbers, special characters, blank space etc.,

Example:
“Hello”, “1987”, “Well Done”, “ 5 + 3”

Backslash character constants:

A backslash character (\) is used to introduce an escape sequence, which allows a visual
representation of certain nongraphic characters

Meaning(Name)

An’ iz Variables:
Art carriage return
A form feed A variable is an identifier that is used to store
At el different values at different times during the
A" alert execution of the program
b back
\ ST Example:
\o null Average, height, Total, Counter 1,
i\ vertical tab
class_strength etc.,
W back slash
A single quote
A Double quote

The following conditions hold good for a variable

a) Variable name must begin with a letter

b) It must begin with a digit

c) Variable names can be any length

d) It should not be a keyword

e) Upper case and lower case letters are different
f) White spaces are not allowed.

DATA TYPES

The data type indicates the type of data stored in the variables. The data types are classified into

» Primary (fundamental) data type
» Derived data type
» User defined data type

DATA TYlPES IN C
| - |

T
— int [arrays — structure
— char — pointers — union
— float i~ functions — enumeration
— double

Primarv (fundamental) data tvpe

The C language has 3 basic (primary or primitive) data types, they are:

Basic Datatypes [Trimary Datatpyes) The primary data tprS are of five types _
| | | 1. Integer(int)
Interger Floating Point Character 2 Character(char)
patel char 3. Floating point(float
Signed Unsigned double signed char 4. Doubl gp . (ﬂ) fi

int int long double Unsigned Char . qu € precision Iloating
short int short int point(double)
long int long int 5. VOld(VOid)

Integer types:

Integers are whole numbers with a range of values supported by the word size of the machine. The
word size is 16 or 32 bits. For 16 bit word length, the size of the integer value range is -32768 to
+32767 (-2 to +2Y).

In order to provide more range of numbers and storage space, the integer types has been classified into

shortint, int and longint in both signed and unsigned forms

Type Size(bits) Range
char or signed char 8 -128 to 127
unsigned char 8 0 to 255
int or signed int 16 -32768 to 32767
unsigned int 16 0 to 65535
short int or signed short int 8 -128 to 127
unsigned short int 8 0 to 255
long int or signed long int 32 -2147483648 to 2147483647
unsigned long int 32 0 to 4294967295
float 32 3.4E-38 TO 3.4E+38
double 64 1.7E-308 TO 1.7E+308
long double 80 3.4E-4932 TO 1.1E+4932

For example, short int represents small integer values and requires half the amount of storage as a
regular int number uses.

Floating point types
Floating point numbers are declared by the key word float. If more accuracy is required in
representing a number, the type double can be used to define a number. A double data type number

uses 64 bits giving a precision of 64 bits.

Declaration of variables:

The variable names designed must be declared to the complier. The declaration of variables does —
e That it informs the compiler the name of the variable and
e [t specifies what type of data the variable will hold.
There are two types of variable declaration namely —
e Primary type declaration and
e User defined type declaration

Assignment statement:

Values can be assigned to variables using the assignment operator = as follows
variable name = constant;
Example:
initial_value = 0;
final value =100;
balance = 75.84;
yes = ‘X’;

DECISION MAKING AND BRANCHING

In programming the order of execution of instructions may have to be changed depending on certain
conditions. This involves a kind of decision making to see whether a particular condition has occurred or

not and then direct the computer to execute certain instructions accordingly.
Some of the decision making statements are -

1. if statement
switch statement

conditional operator statement

i

goto statement
Decision making with if statement:

It is basically a two-way decision statement used in conjunction with an expression. It is of the form

if(test expression)
Example:

*if (room is dark)
put on lights
*if(code is 1)
Person is male
There are different forms of if statement which is implemented depending on the complexity of the

conditions to be tested. They are —
1. simple if statement
2. ifelse statement
3. nested ifelse statement
4. else if ladder

Simple if statement:

The general form of simple if statement is:

if (test expression) Example:

{ if (code == 1)

statement block; {

! salary = salary + 500;

statement Xx; ; .
printf("%d",salary);

The statement block may be a single statement or a group of statements. If the test expression is true, the
statement block will be executed otherwise the statement block will be skipped and the execution will jump

to the statement —x.

The if.....else statement:

The if... else statement is an extension of the simple if statement

Syntax is:

if (test expression)

{

statement block;

}

else

{

statement block;

}

statement-x;

Example:
if (code==1)

{
boy= boy + 1;

}

else

{
girl = girl + 1;

}

Nesting of ifelse statements

When a series of conditions are to be checked, we may have to use more than one if... else statement in the

nested form.
r— If (test condition-1)

if (test condition-2);

{ statement -1;

}

else
statement -2;

}
else

}

{ statement -3; ——

statement -X; -

The logic of the execution is as shown above. If condition 1 is false, the statement 3 will be executed;
otherwise it continues to perform the second test. If the condition 2 is true, the statement 1 will be
evaluated; otherwise the statement 2 will be evaluated and then the control is transferred to the
statement —X.
Example:
if(a>b)
{
if(a>c)
printf(* a is greater”);
else
printf(“ ¢ is greater”);
}

else

{
if(b>c)

{

Printf(“b is greater”);

}

else

{

Printf(*“c is greater”);

}
The SWITCH statement

The Switch statement tests the value of given expression or variable against a list of case values and when
a match is found that block of statements associated with that case is executed. The general form of switch

statement is as shown below.

switch(expression) Example:

{

case constantl : Int num;

blockl: printf(“enter a number”);
break; scanf(*%d”,&num);

case constant? : switch(num)

block?2; {

breaks case 1:
rea printf(“Sunday”);

block n; break;
break; case 2:

case constant n:

printf(“Monday”);
break;
case 3:

default: ' printf(“Tuesday”);

default block; break;

break: case 4:
} ; printf(“Wednesday”);

break;

case 5:
printf(“Thursday™);
break;

case 6:
printf(“Friday”);
break;

case 7:
printf(“Saturday”);
break;

default:
printf(““‘wrong choice”);
break;

t

Here according to numbers from 1 to 7 the corresponding day is displayed. If we input any number other
than 1 to 7 then the default case is executed.

The goto statement

The goto statement is an unconditional jump statement. This statement can be used to jump from anywhere
to anywhere within a function. The general forms of goto statement is as shown below

goto label —— Label: #4——
...... Slatemenls

Label: PrI—
Statements; goto abel

Example:

#include <stdio.h>
int main()

{
int sum=0;
for(int i = 0; i<=10; i++)

{

goto addition;

}
}

addition:
printf("%d", sum);
}

In this example, we have a label addition and when the value of i (inside loop) is equal to 5 then we are
jumping to this label using goto. This is reason the sum is displaying the sum of numbers till 5 even though

the loop is set to run from 0 to 10.

DECISION MAKING AND LOOPING

Execution of a statement or set of statement repeatedly is called as looping. The loop may be executed

a specified number of times and this depends on the satisfaction of a test condition. A program loop is
made up of two parts —

e Body of the loop and

e Control condition.
Depending on the control condition statement the statements within the loop may be executed repeatedly.
Depending on the position of the control statement in the loop, a control structure may be classified as —

e entry controlled loop

e An exit controlled loop.

The looping process has the following steps:

Setting and initialization of the counter

Execution of the statement in the loop

Test for a specified condition for the execution of the loop

bl e

Incrementing the counter.

The C language provides 3 loop structures.
1. while loop.
2. do loop.
3. for loop.
THE WHILE STATEMENT
The simplest of all the looping structures in C is the while statement. The general format of the while
statement 1s
while (test condition)

{
body of the loop

}

The while is an entry controlled loop statement. The test-condition is evaluated and if the condition is true,
then the body of the loop is executed. After execution of the body, the test-condition is once again
evaluated and if it is true, the body is executed once again. This process of repeated execution of the body
continues until the test-condition finally becomes false and the control is transferred out of the loop.

Example:

sum=0;n=1;
while (n <= 10)
{
sum = sum +n * n;
n=n+1;
b
print(“sum = %d\n”, sum);

The body of the loop is executed 10 times forn =1, 2, ..., 10 each me adding the square of the value of n,
which is incremented inside the loop. The test condition may also be written as n < 11; the result would be
the same. This is a typical example of counter-controlled loops. The variable n is called counter or control
variable.

THE DO STATEMENT

A do...while loop in C is similar to the while loop except that the condition is always executed after the

body of a loop. It is also called an exit-controlled loop.

Syntax

do
{

statements

}While (expression);

On seeing the do statement, the program proceeds to evaluate the body of the loop first. Then the test
condition near while statement is evaluated. If the condition is true, the program continues to evaluate the
body of the loop once again. This process continues as long as the condition is true. When the condition
becomes false, the loop will be terminated and the control goes to the statement that appears immediately
after the while statement. The do ... while statement is an exit-controlled loop.

Example:

#include<stdio.h>
#include<conio.h>

int main()
{
int num=1; //initializing the variable
do //do-while loop
{
printf("%d\n",2*num);
num-++; //incrementing operation
b

while(num<=10);

THE FOR STATEMENT:

Simple ‘for’ loops

The for loop is another entry-controlled loop that provides a more concise loop control structure. The
general format of for loop is

for (initializing ; test-condition ; increment)
{
body of the loop
}
The execution of the for statement is as follows:

1. Inialization of the control variable is done first, using assignment statements such as I = 1 and
count = 0. The variables I and count are known as loop-control variables.

2. The value of the control variable is tested using the test-condition. The test-condition is a

relational expression, such as I < 10 that determines when the loop will exit.

Example:
for(x=0;x<=9;x=x+1)
{

printf (“%d”, x):

}

printf (“\n”);

ARRAYS:

Array in C can be defined as a method of collection of multiple entities of similar type into a

larger group. These entities or elements can be of int, float, char, or double data type or can be of user-
defined data types too like structures. However, in order to be stored together in a single array, all the
elements should be of the same data type. The elements are stored from left to right with the left-most
index being the Oth index and the rightmost index being the (n-1) index. A particular value is indicated by
writing a number called index or subscript in brackets after the array name

Example:

Salary [10] represents the salary of the 10" employee.

Arrays in are of two types —

1. one dimensional arrays

2. Two dimensional arrays.

One dimensional Arrays
One dimensional array is an array that has only one subscript specification that is needed to specify a
particular element of an array. A one-dimensional array is a structured collection of components (often
called array elements) that can be accessed individually by specifying the position of a component with a
single index value.
Syntax:
data-type arr_name(size];
For example, int a[5]
Example of one dimensional array:
#include<stdio.h>
int main ()
{

int a[5] = {10,20,30,40,50};

nt i;

printf ("elements of the array are");

for (1=0; 1<5; 1++)

printf ("%d", a[i]);

}
Output:
Elements of the array are

1020 3040 50
Two dimensional Arrays

An arrav of arrays is known as 2D array. The two dimensional (2D) array in C programming is also

known as matrix. A matrix can be represented as a table of rows and columns.

Example:

This program demonstrates how to store the elements entered by user in a 2d array and how to display the

elements of a two dimensional array.

#include<stdio.h>
int main(){
/* 2D array declaration™®/
int disp[2][3];
/*Counter variables for the loop*/
int1, j;
for(i=0; 1<2; i++) {
for(j=0;j<3;++) {
printf("Enter value for disp[%d][%d]:", 1, j);
scanf("%d", &disp[i][j]);
b
}

//Displaying array elements
printf("Two Dimensional array elements:\n");
for(i=0; 1<2; i++) {
for(j=0;j<3;++) {
printf("%d ", disp[i][j]);
if(j==2){
printf("\n");
}

}

return 0;

}
Output:

Enter value for disp[0][0]:1

Enter value for disp[0][1]:2

Enter value for disp[0][2]:3

Enter value for disp[1][0]:4

Enter value for disp[1][1]:5

Enter value for disp[1][2]:6

Two Dimensional array elements:
123

456

	2. Relational operators:
	A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the relation is false, it returns value 0.
	Comma Operator:
	Precedence of Arithmetic Operators

	Sub Program Section
	The subprogram section contains all the user defined functions that are called in the main function.
	int add(int a, int b)
	{
	returna+b;
	}

	Types of Tokens
	

