Y
Study the Train ML
problem I algorithm
T Analyze

errors

—® Y, ML afrfoau/v

Update
data

¢

Launch!

l@

Train ML
algorithm

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609

©

Evaluate
solution

¥ WWMLWM?OL»?&W Wﬂﬂw
wee (et a?rnmemhra,a, arfm‘m&

Study the > Train_ ML N
problem algorithm
4 A Solution
I 7 l
]
[}
Ll
: |-:'- Vo P
- Se® Inspect the
A *Lots* of data solution
'
]
]
]

]
. L Understand the
I Iterate if needed]- { problem better @

DML som budpe hwmans Aeasn

To summarize, Machine Learning is great for:
ng algorithm can often simplify code and perform bet-

for which there is no good solution at all using a t
the best Machine Learning techniques can find a solution.
ynments: a Machine Learning system can adapt to new data.

ymounts of data

—9‘1’%94% ML Spgionmt

L& wWsed) (}Mufwfgd g %GAMAOJSU-f eaikd GNl.a»(

L—«@Mm baszed uuMthMba.i&ol Wm?.

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609

—BS-ufav,-g_p_d Mw‘ﬂmﬁ c— Yy I e -l’wfuﬁﬁ? Sd-a,gu
~fu.d o e aLcim%{Mma mcldes Ve duisad gl
Lojhed Nadols.

Training set
@~ Label : @“

@ @E New instance
.umm"{{catﬁaw Do g Spav

)\Lawew : ealt- fﬂﬁc@@"m, e

9154190&-

—b lgouMmu o Quf,aw'c{d /LLMM?_ Qe b _
— \ - 1A < —_
* k-Nearest Neighbors
* Linear Regression
* Logistic Regression
* Support Vector Machines (SVMs)
* Decision Trees and Random Forests

e Nuwtad wughooshks

' Undabolesl - YL Sygden (s
0 (Lo vOiVod 4 feadnus

Training set

Waageh g

8 . | a3
A

TO JOIN DIPLOMAWHA[%P opP T S; 1095%2‘_6‘/

— K-Means
— DBSCAN
— Hierarchical Cluster Analysis (HCA)

— One-class SVM
— |solation Forest

— Principal Component Analysis (PCA)
— Kernel PCA

— Locally-Linear Embedding (LLE)

— t-distributed Stochastic Neighbor Embedding (t-SNE)

— Apriori

— Eclat
| D8asge8 /g

gfe
] Q) ? N
38 J': .? \\\\
Fea‘lt:!1

et @
Anomaly x e ®
® .:.

o9
.*..':
e @
® o_
® o [raininginstances

.
Feature 1

- ﬂrmvvu}f-&, gborwbtew

— S’ £Lraviud qu&a, S- Sowe 0MgoRires an dual voitn
fﬁlhfaﬂ»a Jabekid Lamen amd e e waed Seunl
Qtrtm‘w-‘l U—alw.vﬂ

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609

Feature 2

[Y o o = ° _ gwa,{g neted
. .. QA:O'QO.. :D:... e}, f) Me
: ® e o o.. o. e o %o M\a, l/l“»(d
) °% o 'x13—:CIass? .-' g 2 : . &Mwﬂl‘-ﬁ,
& p¥m D.. 0[]..'.... o. . |.:].
e ® o ® e [[® -
Feature 1

=t

Semisupervised learning with two classes (triangles and squares): the unla-
beled examples (circles) help classify a new instance (the cross) into the triangle class
rather than the square class, even though it is closer to the labeled squares

;—Pgafmuuw&\?g—: GMo knwdwn as em,wuwwxfwy
—5

In batch learning, the system is incapable of learning incrementally: it must be trained
using all the available data. This will generally take a lot of time and computing
resources, so it is typically done offline. First the system is trained, and then it is
launched into production and runs without learning anymaore; it just applies what it
has learned. This is called offline learning.

If you want a batch learning system to know about new data (such as a new type of
spam), you need to train a new version of the system from scratch on the full dataset
(not just the new data, but also the old data), then stop the old system and replace it
with the new one.

—> Bnldine Lﬂﬂvut?vxa "

In online learning, you train the system incrementally by feeding it data instances
sequentially, either individually or in small groups called mini-batches. Each learning
step is fast and cheap, so the system can learn about new data on the fly, as it arrives.

S ' /| B

T New data (on the fly)

Y
S B Train_ML Evalqale
algorithm solution

&

In online learning, a model is trained and launched into production, and then it keeps learning as new data
comes in

- - -

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609

Precte o] gume hwwu'wa
> we Jo¥ WMM Yk coret fit v
Ly e whv MWAMOQJ M[}“]'M
Mavet |

L@WWWMMMMW%\?

P O (LA

T [-]

N s B

. . Chop into Launch!
Lots* of data pieces

! 3,

Study the Train online Evaluate
problem ML algorithm solution

‘ Analyze <

errors

—0 g GuLfis mm&%mwwcﬂmﬂ%
" Mabn GelvaeRot ttaridne(Lrathiing.

(B Tnevfficient Pl =] Pides, dats-

@) o sty aiy Bin: 4 st o

wAL O ’fw Sk tat & WMSMMM

0"/ mwuawwawwa&wfacd@
O Poor quakiry bodal-

Obviously, if your training data is full of errors, outliers, and noise (e.g., due to poorquality
measurements), it will make it harder for the system to detect the underlying patterns, so your system is
less likely to perform well. It is often well worth the effort to spend time cleaning up your training data.
The truth is, most data scientists spend a significant part of their time doing just that. The following are a
couple of examples of when you'd want to clean up training data:

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609

@ Tan et Feadure

@Qm-ﬁ&f@ e o Poka & _
- Q

Overfitting happens when the model is too complex relative to the
amount and noisiness of the training data. Here are possible solu-
tions:

« Simplify the model by selecting one with fewer parameters

(e.g., a linear model rather than a high-degree polynomial

model), by reducing the number of attributes in the training

data, or by constraining the model.

+ Gather more training data.

+ Reduce the noise in the training data (e.q., fix data errors and
remove outliers).

@UWFH‘&\a 4-14: fmﬁﬁﬁ«-a, Date o -

* Select a more powerful model, with more parameters.

- Feed better features to the learning algorithm (feature engineering).

* Reduce the constraints on the model (e.g., reduce the regularization hyperpara-
meter).

Netc¢ ¢ -

— ¢

The system will not perform well if your training set is too small, or if the data is
not representative, is noisy, or is polluted with irrelevant features (garbage in,
garbage out). Lastly, your model needs to be neither too simple (in which case it
will underfit) nor too complex (in which case it will overfit).

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609

- Serve boric funmy et Fowld be 3 b ead

(?‘U{ betfx wvwalwm;wwlﬁ Q/L o Vs
D Pipelivus ¢- Sl aoowmweamfm)

A sequence of data processing components is called a data pipeline. Pipelines are very
common in Machine Learning systems, since there is a lot of data to manipulate and
many data transformations to apply.

Components typically run asynchronously. Each component pulls in a large amount
of data, processes it, and spits out the result in another data store. Then, some time
later, the next component in the pipeline pulls this data and spits out its own output.
Each component is fairly self-contained: the interface between components is simply
the data store. This makes the system simple to grasp (with the help of a data flow
graph), and different teams can focus on different components. Moreover, if a com-
ponent breaks down, the downstream components can often continue to run nor-
mally (at least for a while) by just using the last output from the broken component.
This makes the architecture quite robust.

On the other hand, a broken component can go unnoticed for some time if proper
monitoring is not implemented. The data gets stale and the overall system’s perfor-
mance drops

__efafoxwmﬂuf Meagure 7 - A—W ot Yol , NW\ULAKEUL
{0,& }(.astnem Yobleny [a d'JM, 208t HMuann Sw[uauu.
Fasr (RMSE], gﬁm o, Fdua, how nuude

2XR,0% e ij_:ﬁ G A8 rxj_dm?
—Utons, | aiHu C,ua”«j' qta& ﬂﬁ\&aﬂ CRAORA

RMS & (_’Grh)'-’ | %

n
MSE(x, W) - | 2 En[n‘""]——\av’)]z 78”—9 U a vedor o
Oé/ n oML feabias Vg,
Ewd,.dmw (Wbl |
Moo, Qﬂuaud eAroY Oam.e, M Gt e

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609 M&M
n e

al))_g Hre dusizeod WTMJ‘ Volue tor tmeat {elamces.
W) — Sygiom rr{(_iifc:dew furndion. axd w@llad oo

X—o U a mahx W&ﬁfhna aja{{_ea}'uu. WA—U—(QRMw
Aodp el Qla}i nstanwer Pn e dobasek -

—p RMEE, MSE.) MRE oM ane Wt fmien,

o U) :
MPAE (1in) - 2. ,h(%— ihe 303}

i
h =k

D ald e RMaeE, MSE, MPAE axe W ugs 0 Mmuotae

e dua tene bkw hoo Vedors 1 e Veder ot
Pffufaiw ovd = e MWG} W Ve

—p» RMAE, MEE aze »mBYC gcauntbwe O autios M
W MPpE-

—Pwowmwﬂmwwwum,r)w

AL o o4 o r?/h.‘_gw

from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
é —

ol

Cre BN ARNANIP R T0Y 520 cryglionpaseos d oo, of e ot

—b F%foomm';& G b B indo parolos Dadeframne

e wedr wilh be]Wvﬁx&w e,
vun) _dda. < Pd. ba}a{\m[m, s = WV‘&%M,
M:M.mj

—© St Waann t)fpwn‘falu Cu l/ka/md/.&_ SMoas Yo daize
@*&, \N‘Ujs'efel/la Joluyg ; Qw,uwuj-e,g HuRe

‘“erg'wm kgl oﬁ./wtmi;c. %mem
9 = S’l? = ! v MY

L

A

wweeld, Vordabie oM o U com e
Loy w0 de
alsO

9 Mk fae w0 dada S Voriakte

. dalew 30

—b &Afm fir Cnew - dodon)

—» f‘m.towlt(.mahd'bfc,a_:(*om oM nddbinn
Voduan v LV Tes poLd by
ceume/k v - dakew

- X = Mm-ﬂmlﬁaﬂﬂ(w~dﬂkﬂ)

s

TO JOIN DIPLOMA WHATSAPP GROUP CONTACT US:8102525609

—® Mest ML aulof?"’hm P—r% 0 wWoTk Wit NuMmBc Volue -
A0 ;fm(wwmmﬁ% ca.wlo-ncal o i Voluce
e &k lawu powioe Daldnmal Evuodi. ok

—> fyom Sﬂ(LLa&an_rmaM:iwa, &ufoﬂ: Orcl@el BEvvcodar
P Ol enmodu s OsdSalbncodu C)

o wpdd Vardable
Cuoied

Uf’ dds e hawe datesdt Y nwd- dade” onnd O
Wi v e A e a cakgorical Voridkt

. doka . emcodud = Ow’otﬁvoi-ﬂmwdk\-{ﬂ'ttm@wﬂ
t d, — [VLM—M&C”A‘“:])
wwum'e. Vasrable er Snxiano
0&’ mwnon e daka

—> Ovdival wemroda rcwlu]om'u_. :(i-ocaxxm cadtacm
-l thour o et
Aate

= J:FJ‘GJWA%MWL«LLM&O

M oo wadines ool © Gy P oF
Geated Ve bw%} arm buse pe m{?o’n}, e okt bude
@LM 'Y whan e cabtqm? s eMumoICe

‘O Hwe new ettt butt ake sevuhlnas couked
dom odriouwka: Sklas Frow:om & BGue Het Encole
lau o ceuwvat M.k.qoﬁcai odues fwhe evie-het

VuATTS"

— from &klam. F"\’br?‘mwﬁA? Grnpor™ One Het Brviodus

—> _tot_emeodu = One et Broda ()
Ulf_ Datesek = o e~ Wmm AW i ha4=,

—5 o doun _1wet = cak_ ermtodur - fit_tioma prn (neo _ data)

=
Notice that the output is a SciPy sparse matrix, instead of a NumPy array. This is very

A —

1ents. You can us ostly like a norm but |fyou reallywantto con-
vert it to a (dense) NumPy afray Just call the toarray() method:

-
© . dadew_ Lt www&u
)

w)&([:r,l,o,o,o. ,}vaw\r\}
J])

L1084 -

C

—B:.jamﬂmfma{ avoude s @),aua,, Woraloer 8 Po<atlole
Wulcmu e owe -Wet - emcode Mlm@t—mquxgp

% dapuk ot hy g Sewdon il o

grleasa, rfww 1 v eilevd Pae Tm{ofml%«m
ok ovd Bare Esfonotor’ lous f—rvwx glliae. . Hrere

MMPMLM Wﬁfmmoﬁfar

%001 Gt Mmusprmu

wimmﬁu@uwm {ooin

import numpy as n!a . . Eg %’rcf (&

from sklearn.base import BaseEstimator, TransformerMixin

Step 2: Define Your Custom Transformer

Create a class that inherits from BaseEstimator and TransformerMixin, and implement the required
methods: __init__, fit, and transform.

Here is an example of a custom transformer that adds a specified constant to all elements of an input
array:

python (9 Copy code

(BaseEstimator, TransformerMixin):
(self, constant=1):

self.constant = constant

(self, X, y=

self
(self, X):

X + self.constant

$Fw Qwﬁ\,wa‘— m%mm ﬁwuraﬁwmufw
wam@ff,u&hawm #msm»\d Muaxao
o't FadoTM wdd whaur e wxfwt‘ rwimeaed @Jdnbukeg
haue Aiffercnt Auodsx - Nete viaat ,smiu«?,mmad'
Vidwr 0 M Wh‘lw
—Bhoowwmwaa,;haammmbw Saame Sara
wun - max .5(_,6\).,3/‘3 avd Krenrdoaxdizarion-

—© MmO max ,e.c.axﬁna:- Vaime AL mw ovd mecolud So

Wgaded = b ko
MWomax—- Lrmin, Mripn — MAX Mc_o],
2
-—-bwmdxw'm‘:- Alocadts dadn 4o bhawe * Maas(s)

9& ‘0" gval Stadasd dewlation, (&) 93, L (unt Vosiance).

= N ™M
x a &

M Rovdasdization O fuugmmundid. onnd
2k dex net MW“M&«W‘kav
Breleasn- provids @ hovtjormes Catled $ tonvdasg Scaluis
{eﬂ st dasdaszation -

'—B”rw{afw@w F!SW:__ e ase M‘Ma' AoA50 J‘Wmivfm
'mmmﬂkwwb%@wwfwwﬁw‘afw
ovole. .{-01’ et WM beeome v’ooa, 1°m/tfoftwvub-

sklegsn proudce Pr"wlﬁm fhoss to halfp wir

S Cequenian o rramtmmnm

— from mwmfﬂr.w«'m E’wurox,t Pve'a.u{fl/\-ﬂ
-"Bf’l;%.«_lfb\.a: PrfzdfvaE
- € srd _sakn ¥, Stomdasd Scohr (),
P ¢),

{ot" drows fpionarion])

-~
When you call the pipeline’s fit() method, it calls fit_transform() sequentially on
all transformers, passing the output of each call as the parameter to the next call until
it reaches the final estimator, for which it calls the fit() method.

— letwmn fmj”"’“ﬁ'ﬁ‘ = e haue hondld e cww?on"cal
W ad e vwmalfced welumns N
Wewdd ke e omvenipt b have o m“’ua{e,
"{'M[bfmu oble © hovale gl Bl ,a,f;fabyjm?,

the affvop'm?w&,)tfwmtmwu_u ¥ eaur WHumn-

— Srleam hoame 'Cetumn"i"tw\/wd@ww' AL

— fﬂrm AkLoasnn - L@M/PO% fvufm’b %mJM’fM
M_Pffhﬁu. = CQ{AJMWTWW (c

Cloum™” 5 »wm- ?’f;rifm , twm-oade) |
(' cotegorial® ot pipeline , cod date)
1)

—b Jt o\r'ol/n','u ga i ﬁmuiorm o e aTFm ane
Blwmng Gvd conatevats e etMTm.l' gv{,em?
second aga (e e forve TS must Adune savae
owmbe, & R).

—> Qpu Volddatie- §-
Cross-validation is a technique used to assess the performance of a machine learning
model. It involves partitioning the data into subsets, training the model on some subsets
(training set), and evaluating it on the remaining subsets (validation set). This process is
repeated multiple times to ensure the model's performance is consistent and not dependent
on a particular split of the data.

In scikit-learn (sklearn), there are several cross-validation techniques available, including K-
Fold, Stratified K-Fold, Leave-One-Out, and more.

K- Eld'--
How K-Fold Cross-Validation Works
-p Data Splitting:

e The dataset is divided into k equal-sized subsets or "folds".
e For example, if k=5, the dataset is divided into 5 folds.

_# Training and Validation:

————

e The model is trained and validated k times.
o In each iteration, one of the k folds is used as the validation set, and the remaining k-1 folds

are used as the training set.
e This process is repeated k times, with each fold being used exactly once as the validation

set.
—p Performance Estimation:

¢ The performance metric (e.g., accuracy, precision, recall) is computed for each iteration.
The final performance estimate is obtained by averaging the performance metrics from all k

iterations. /@ @ Moge, siiioddle P.ul—o-rwwvvu__

(> Fdve Qvu,&:bﬁ’m.a)

Fmarfid < {o\d -
\

Stratified K-Fold Cross-Validation is an extension of K-Fold Cross-Validation that ensures
each fold is representative of the entire dataset, particularly with regard to the distribution
of the target variable. This is particularly useful when dealing with imbalanced datasets

where some classes are underrepresented.

How Stratified K-Fold Cross-Validation Works
—p Data Splitting:

e The dataset is divided into k folds, similar to K-Fold Cross-Validation.
® However, the splitting is done in such a way that each fold maintains the same proportion of
classes as in the entire dataset.
— Training and Validation:

e The process is similar to K-Fold Cross-Validation.
o |n each iteration, one of the k folds is used as the validation set, and the remaining k-1 folds

are used as the training set.

s This ensures that each fold is a good representative of the entire dataset, especially in
terms of class distribution.
—p Performance Estimation:

o The performance metric (e.g., accuracy, precision, recall) is computed for each iteration.
The final performance estimate is obtained by averaging the performance metrics from all k

iterations. = Gt .
/9@ Mandais daes Oubnbuke
T ow it Pesforpmannce
e B Nk

—D lLame —One - Gut ¢ -
Leave-One-Out Cross-Validation (LOOCV) is a special case of K-Fold Cross-Validation where
the number of folds equals the number of data points in the dataset. In LOOCV, each data

point is used once as a validation set while the rest of the data points are used as the
training set. This process is repeated for each data point.

TP Hupaposarmetn bunSog 2
—epo/wff’mawwa,bm?mméfof ol er fune fe
e mokh we hawe O wae MSC?U.& fofw

Seazddr

O gad Seazcn -

All you need to do is tell it which hyperparameters you want it to experiment with and what
values to try out, and it will use cross-validation to evaluate all the possible combinations of
hyperparameter values «

For example, the following code searches for the best combi-
nation of hyperparameter values for the RandomForestRegressor:

from sklearn.model_selection import GridSearchCV Y oue |
param_grid = [o {m:g*q =12 Levvin'c~
{'n_estimators": [3, 10, 30], 'max_features': [2, 4, 6, 8]}, —s jored
{bootstrap" [False], 'n_estimators": [3, 10], 'max_features': [2, 3, 4]}, 12 €4
] [} —
L p for s ¥ -6 =LY
forest_reg = RandomForestRegressor() ?

vl osie-

A ol Ton ¢

grid_search = GridSearchCV(forest_reg, param_grid, cv=5, —7 W for JolLdalie~

scoring='neg_mean_squared_error’,
return_train_score=True)

grid_search.fit(housing_prepared, housing_labels) —0 okl 2ound e«l tmf;m,&,a

The grid search approach is fine when you are exploring relatively few combinations,
like in the previous example, but when the hyperparameter search space is large, it is
often preferable to use RandomizedSearchCV instead. This class can be used in much
the same way as the GridSearchCV class, but instead of trying out all possible combi-
nations, it evaluates a given number of random combinations by selecting a random
value for each hyperparameter at every iteration. This approach has two main
benefits:

* If you let the randomized search run for, say, 1,000 iterations, this approach will
explore 1,000 different values for each hyperparameter (instead of just a few val-

ues per hyperparameter with the grid search approach).

« Simply by setting the number of iterations, you have more control over the com-
puting budget you want to allocate to hyperparameter search.

—© Qe %mrwwwmwmﬁwm&

Uraples & ‘MNET . Skeau. poutolu sy htpes fum

~cttew 0 dowload FW dotasekc. MNIST o One azwvw-

—® from akleaw - dajaseds W fetcb_sperrinl
Dbt s fehur- opornd (‘rmict _a3y’) G pordlas
— mni+ » () .
D Akt (', °tu3pr‘, feoture _viarss’,
TDesRY, gl ! umteqoris)
‘wd ']

© Pulormonue Muaruses O-
\

—5 ATcwt A 3(_4,1;3;3113 et 'Kx(fdud performamie. Mt
fov %Mk.m/%m /:/oum o ki,
oW alkuaed dakendks vauzm sV AQULRL O W

'—9% Wﬁ?@* .=
A much better way to evaluate the performance of a classifier is to look at the confu-
sion matrix. The general idea is to count the number of times instances of class A are

classified as class B. For example, to know the number of times the classifier confused

images of 5s with 3s, you would look in the fifth row and third column of the confu-
sion matrix.

16 wre, 91, wv'd«mwa ol Jux’-b sl v e {cuad-
—P {'RM & kleaom - g i ca lf/u.foﬂ: S _ el

-5 Louguslon_ mati Emamfaa% prod - chax |

Pred.lcned
TAre Falae

—& TP - Toue Povitine [When we
1| TP /FP wrrwﬁa mi‘h Fgﬁﬁﬂb
3 Ao]
0 | FN / TN P P rau PWOVM Cu)l/\wuuu
Plenpuaron Makix Winable ko Jasinky, prIti
cAazes

_F__'_\’:“F—M I\Julai'/bu» [u«')\rwvl, e, FTLQU:Ll' Pe‘rﬂﬁu& ut
A achwally u Neatie]

TN - Tame N [wiow we prectict e e W TS
auuad » '\’O?a.bw]

—b Presion. &9 e kD W : oxi e ebtolion
o e total preducted f’owl. U-H‘d fm‘b“ f -
_ew”‘d’“”m makiin e Lok e”& sv‘dﬂmﬂmm but somehme
xd,wma,a Puda, Q@ n0ke coucke MWk VL - W?ﬂwv‘?

owe o leek at G e e of e Pee?ﬁm.
pudichions | thés 4 wald pruliion o Hhe claif

Preccc vev i &
TP+ FF
TP is the number of true positives, and FP is the number of false positives.

I

A trivial way to have perfect precision is to make one single positive prediction and
ensure it is correct (precision = 1/1 = 100%). But this would not be very useful, since
the classifier would ignore all but one positive instance. So precision is typically used
along with another metric named recall, also called sensitivity or the true positive rate
(TPR): this is the ratio of positive instances that are correctly detected by the classifier
(Equation 3-2).
Equation 3-2. Recall P Rl U He aakio e Mwﬂ?

PTWM fﬂ‘kv?liu-e_. obsonw oo
+O &u %S‘WMG'M fw +Hae
TereEn | | ginal clpase

FN is, of course, the number of false negatives.

TF

Kecal] =

-» & lagupn« ¥ 7
\ffgvvl Mk L‘f/w-roﬁ preciulon. seone, AscaM.score

- o
izv‘gﬁam fwwaJuJ 4a¢ﬁmw&u.FﬁWMbma~d aLrdL ko oo
Vﬂpa}(\fﬂ;ﬁa Loddad the £ Swge fiupa,vﬁ‘“a.daﬂ 55‘ o
v o &wxﬁ: uuaad, s‘oo ARVupare, (w20 Mﬁlﬁam

Ihaswmeuie wian~ et ilon avad Lecodd -
bew«baj i’:tww : M 2avy ’w_a»l'fe&wg Vodaes esimua,m
mmmm e wwu/u MO Y to ke Vadue -

L L ey
{,\,%.

bm‘/wamo{fuw%&ww

2 P [~J]
_ 2x Rewsr s X Recalld - TP

1 .
+ 2 NN o P e, TP
Precodon Amald =

F, swee =

—b Roc m?~£ﬁm§m9fwtng naatesishe]
Burumew $o e wed wite b?v\ap_,a, M.%‘M-

&
:-_a
g (1

—Pthe ROC (VT TVT N
f)f,&t')’; e Tawe Positive gaue (TP ¢l [Mﬂm

Mame, Y
for secan) agadut folse positive rade (Frel. The

FPR & v
7 LI 93, Vu_c‘wli'we- mstane, fhat oge

fneo '

et aa?:{«hd G4 f)g«sfi’tiwz- 9| swlu.al to 1 - T
) RgAC INRR,den b e, Aaij,o?‘ I/u.c?aixuc.a»
Mgt o ase UUMJ{,} chasstffed as 9 O at -

TNR & amo catind /afzeu"/ﬁc,ﬁf.

£
TPRe _TF

FP+ TN
TP ¢FN

FPe=

—> Fte—r TPR Vs FPR . Plet +ne TPR [7~a;cz¢3 a.gg.ﬁmm
FPR(x- owid]

Receiver Operating Characteristic

1.0 1 y . -
0.8 ™ ,’
0.6 {4 i

0.4 1 -

True Positive Rate
\

0.2 -

- - ROC curve (area = 0.91)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

—2 ROC s

P Mo closificalon b by asifios Alkagni
b etweer w0 Ao es WA L M{—.‘w (om0 cated
WA wevwal Mf,fm,&) Cann da&hom?mzw b!w nrOSL
W oo chastexs

— Sonne O-Lc]oxﬂ'inm,a [W ad SCD MC.FM , Ravdern forext

GJ/ L\.amawﬂn.? by PL(, Aaunes mfowbd . s spete
% Loyl Rguuinn o Support Vekor Mactrini]
AL Mwﬁa, bﬁfwg, Aok feAs -
—»
there are various strategies that you can use to perform multiclass classification
with multiple binary classifiers. One way to create a system that can classify the digit
images into 10 classes (from 0 to 9) is to train 10 binary classifiers, one for each digit (a 0-
detector, a 1-detector, a 2-detector, and so on). Then when you want to classify an image,

you get the decision score from each classifier for that image and you select the class
whose classifier outputs the highest score. This is called the one-versus-the-rest (OvR)

strategy (also called one-versus-all).

—
Another strategy is to train a binary classifier for every pair of digits: one to distin-
guish Os and 1s, another to distinguish Os and 2s, another for 1s and 2s, and so on.
This is called the one-versus-one (OvO) strategy. If there are N classes, you need to
train N x (N — 1) / 2 classifiers. For the MNIST problem, this means training 45
binary classifiers! When you want to classify an image, you have to run the image
through all 45 classifiers and see which class wins the most duels. The main advan-
tage of OvO is that each classifier only needs to be trained on the part of the training
set for the two classes that it must distinguish.

¥ G
Some algorithms (such as Support Vector Machine classifiers) scale poorly with the
size of the training set. For these algorithms OvO is preferred because it is faster to
train many classifiers on small training sets than to train few classifiers on large train-
ing sets. For most binary classification algorithms, however, OVR is preferred. o

Mot SmAAfua, &th CoOm ASARAALA a,ca.«uwd,
—PExmor Avalmgin i-
g

You'd explore data preparation options, try out multiple models (shortlisting the best ones
and fine-tuning their hyperparameters using GridSearchCV), and automate as much as
possible. Here, we will assume that you have found a promising model and you want to find
ways to improve it. One way to do this is to analyze the types of errors it makes.

O Flar, ook ok e uwion wadiir s fou ved o mae
fudécb'mu%?m Qou validaXlon , thun M e o
w«mdmﬁm VO X . /pS%d ‘-M"M”{""(W

1 —b ‘l-al*ﬂb:ﬂ- ?Y‘Lo{—“- Aol _Val_ [J’I’M Lsaot_,d,({,x,hm'w-sm
2 4 - o, ‘w
b g
2 wvf-m = Wﬂ/udmun'e‘m_,rwat\’:)q (a_m&. 3 - T prd)
Q —p ug'wt’_,m

array([[5578, o, Z2Z2, 7s 8, 45, 35, 5, 222, 1].
£ e, 6410, 35, 26, 4, 44, 4, 8, 198, 13].
[28, 27, 5232, 100, 74, 27, 68, 37, 354, Ex iy
[23. 18, 115, 5254, 2, 209, 26, 38, 373, 731

- E 31, 14, 45, 12, 5219, 11, 33, 26, 299, 172].,
[26, 16, 31, 173, 54, 4484, 76, 14, 482, 65].
L 31; o by gl 45, Z5 42, 98, 5556, 3y A235 11
[=20, 10, 53, .27 50, 13, 3, 5696, 173, 220],
[a7, 64, a7, 91, 3, 125, 24, 11, 5421, 48],
[24, 18, 29, 67, 116, 39, 1, 174, 329, 5152]11)

—
That's a lot of numbers. It's often more convenient to look at an image representation

of the confusion matrix, using Matplotlib’s matshow() function:

—D i)b{;. mm(w{_ mu | CJV\AI(T’EPMOVVIW_)

& .

2

2 <1 6

—»
This confusion matrix looks pretty good, since most images are on the main diago-
nal, which means that they were classified correctly. The 5s look slightly darker than
the other digits, which could mean that there are fewer images of 5s in the dataset or
that the classifier does not perform as well on 5s as on other digits. In fact, you can
verify that both are the case.

—b
Let's focus the plot on the errors. First, you need to divide each value in the confusion
matrix by the number of images in the corresponding class so that you can compare
error rates instead of absolute numbers of errors (which would make abundant
classes look unfairly bad):

- row_sums = conf_mx.sum(axis=1, keepdims=True)
_p norm_conf_mx = conf_mx / row_sums
Fill the diagonal with zeros to keep only the errors, and plot the result:
—» np.fill_diagonal(norm_conf_myx, 0)
—5 plt. matshow(norm_conf_mx, cmap=plt.cm.gray)

—o plt.show()

o

O 2 4 6 8

Lo Rumunmbe, that Loux Aval ehoteex, vOWdle colnn
J\tfrruml' F‘redfd{al Ldsger- Mo 9lpm fo‘f Ao g
<1w|%'. b‘ha"ﬂt) WAt TS a&uwﬁ’lﬂi‘

WIMMMb-f&d s 8¢ Howuns 66{ Mw& a wet

Hut bad Hrot akuad T8 w %MM
) an, ‘dr‘w
%vt ’m?]ﬂ-«h? daw‘iqf»'cd o~ s

Analyzing the confusion matrix often gives you insights into ways to improve your
classifier. Looking at this plot, it seems that your efforts should be spent on reducing
the false 8s. For example, you could try to gather more training data for digits that
look like 8s (but are not) so that the classifier can learn to distinguish them from real
8s.

— Malhy o] M{E’W 9~

Until now each instance has always been assigned to just one class. In some cases you
may want your classifier to output multiple classes for each instance. Consider a
facerecognition classifier: what should it do if it recognizes several people in the same
picture? It should attach one tag per person it recognizes. Say the classifier has been
trained to recognize three faces, Alice, Bob, and Charlie. Then when the classifier is
shown a picture of Alice and Charlie, it should output [1, 0, 1] (meaning “Alice yes,

Bob no, Charlie yes”). Such a classification system that outputs multiple binary tags is
called a multilabel classification system.

P Mulbouspnt Lauvfication - A om ke oldo ﬂcw?wl-cd
A wwjﬁw-lfwt‘ﬂwmdﬂ% Mf»‘mﬁeu- Ry, 93\A4,f|ﬁ],
amummm e}, mudhi b ef W%m wWhire eoen
,Qw.z,{, be iy dacs -

._'
To illustrate this, let’s build a system that removes noise from images. It will take as
input a noisy digit image, and it will (hopefully) output a clean digit image, repre-
sented as an array of pixel intensities, just like the MNIST images. Notice that the
classifier's output is multilabel (one label per pixel) and each label can have multiple
values (pixel intensity ranges from 0 to 255). It is thus an example of a multioutput
classification system.

— 7 Ohsptr -4 ¢ -

D Howens, hauday o WWM ?@o% ok
W*\J/‘f?,evciuwua,okfvm o oL e appropriae
i’ﬂwAg

nseel, e ’ﬁ'?'u: algofitum fo we, and @

sek- asomneler fagles MLWWMA»?O
Wmu uﬁa!u mfmod Emwuaw o(wu?,

P e Regaersiony @~

™ Mow %walka,,a,u‘hwmddrwa Pﬂdﬁcbi&wb?
s%,fb}/ Wu:&.,g% a wcfgo\&d Svna ol,m &Tm.r
fatuss) phut @ wWnstant catlad b biou {eunn |atso cound
W"—'fm.*uu-p‘bm)°

e h (2)

‘?:&04—9-:7%—!* Gyt - -+ Bnu.
Co Loeas e nodd edicn o
,_,] Ku?ruxm FY

wv Hua Qﬁt&m%:

-g& e prediched Vatoe

®* VU N Hee wwnrber 9& feotuees

e M A the [tw featuse. Values

° 83 e ™ wnedel pasommebs G’wﬁ?m b o
tue €0 o M feabute wwdgils €1, 6, Bn)-

A Lo be wWiaHew vwwvdr imose

U Vetorized fO’W’

Wnd.(d?,uﬁ\%»?

n
1 = lq,e_(n):: e

gi&m Maxwaew U sele ngm (Vedorized
forn)

“9% MLJ Vedorr ol %{&/\, WM& os ol V‘ukm&,vOIM'd.u

Ore Zbowwaa with o Qx'val:_ Le\vman .

'j'i QM%%QB{UMW
Veuoss, thon e

diction, > =B , Wheae 0T G the
Mropc. o Ola 2w vuhor (iead a clunn Vedo)
od 8T & the mwadne

vvn;-.»uu-?f)b&aﬁ’gﬂm & 6T amd x -
%

to train a Linear Regression model, we need to find the value of 6 that minimi-
zes the RMSE. In practice, it is simpler to minimize the mean squared error (MSE)

than the RMSE, and it leads to the same result (because the value that minimizes a
function also minimizes its square root).

—P e M$Ee],al,mw WM%W%MW
mm%mx& mwmam»na

—

MEE (8) = L 2 [Tl -)7

m__vd l
\BMM\%W veie

Vodae

> Novwal @,vw{m

To find the value of 8 that minimizes the cost function, there is a closed-form solution
—in other words, a mathematical equation that gives the result directly. This is called
the Normal Equation ,

B= (xTxa* xTy

e 9T G e Jauue 0&9 Pt dmizes Y 8% fumd.

e VY U tme VedoT m;aul- Velies cg—mmﬁwwa" W) 4o
; wm) | G?’ ‘d
d
— Fa(io—(m&? Loreas Rﬂa,amt”mm Mﬁ/\? felasr~ G ?&Af’u..
—e-f'rs‘m S kedgan « Wnear_wvineddd warw‘ﬁ’ UGMWM

— Un_ Mmﬂ?&pm C)
o 4T . @BM MWM&
-—e.ﬂmwu%.ﬁt(%,mmnj‘a train)

T om odddq i Wi EWew Mew Winsou rapeass -
woe¥K anval uoha.bwmww’vuwm%bwvdft.

Vertical change

S1 =
ope Horizontal change

Positive slope Negative slope Zero slope Undefined slope

LINEAR EQUATIONS

* Slope-intercept form: y=mx+b

 Standard form: Ax + By = C, where A and B are not both O.

PARALLEL LINES

Same slope (positive, negative, zero)

or both vertical

PERPENDICULAR LINES

* Product of slopes is -1 g Oneis vertical and the other horizontal JMiace

EXAMPLE

Passes through (-2, 6) and parallel to

_zx 5
Yy=3 3

Passes through (-2, 6) and perpendicular to

_zx 5
Yy =3 3

BREAK-EVEN ANALYSIS

e Linear cost function, C(x) =mx + b m is the marginal cost, b is the fixed
cost, x is the number of items produced

« Revenue function, R(x) = PX p is the price per unit and x is the
number of units sold

e Profit function, P(x) = R(x) - C(x)

* Break-even point: The point where R(x) = C(x) Occurs where the two lines intersect

EXAMPLE

The cost to produce x widgets is given by C(x) = 105x + 6000 and each widget sells for
$250. Determine the break-even quantity.

Solution:
R(41) =250(41) = 10,250 R(42) = 250(42) = 10,500
R(x) = 250x
and and
250x = 105x + 6000
145% = 6000 C(41) =105(41) + 6000 = 10,305 C(42)=105(42) + 6000 =10,410
x ~41.38

The breakeven quantity is 42 widgets.

Note: Selling 41 widgets is not enough.

LEAST SQUARES LINE

Minimize the sum of the squares of the vertical distances from the data points to the line

y=mx-+b

Data points (x4, 1), (X2, V2), -, (Xn, Yn)

N
_nExy) - QEx)Qy)
T T - (R r)?
and
)%
b — Xy—-—m(Xx) "
n

SCATTERPLOT

Income from side business Let x represent the number of years since 1980 and

y represent the income in thousands of dollars
Year Income

1980 8 414
25.0 - ° @

1985 9 124
225

1990 10,806 -

1995 12.321 ¢ 175 .

2000 15,638 23501 .

2005 18,242 125 - "

2010 24792 = :

2015 25 436 5 5 » B 2 = > =

Years since 1980

1980 8,414
1985 9.124
1990 10,806
1993 12,321
2000 15,638
2005 18,242
2010 24,792
2015 25,436

LEAST SQUARES CALCULATIONS

Least Squares Calculations

X

0
S
10
15
20
25
30
35

140

y
8.414

9.124
10.806
12.321
15.638
18.242
24.792
25.436

o
0
45.62

108.06

184.815

312.76
456.05
743.76
390.26

N
0
25
100
225
400
625
200
1225

y2
70.795396
83.247376
116.769636
151.807041
244547044
332.770564
614.643264
646.990096

124.773 2741.325 3500 2261.57042

aCxy) - COCY)
T TG) — (B x)2

_ 8(2741.325) — (140)(124.773)
B 8(3500) — (140)2

= 0.5312

_Zy-mE)

n

b

124773 — (0.5312)(140)
B 8

= 6.3

y=0.5312x+6.3

GRAPH OF LEAST SQUARES LINE

25041 @ Original Datapoints °
- |east Squares Line

225 -
20.0 -

17.5 1

Income

15.0 1
12.5 1
10.0 A1

1.5 -

Ll L] Ll] L} L}] Ll

0 5 10 15 20 25 30 35
Years since 1980

LEAST SQUARES LINE PREDICTION

Use the least squares line y = 0.5312x + 6.3 to predict income in 2025

Recall, x is the number of years since 1980, so x = 45 corresponds to 2025
y = (0.5312)(45) + 6.3 = 30.204

Since y is in thousands of dollars, the predicted income in 2025 is $30,204

CORRELATION COEFFICIENT

S xy) - EOCy) . z = X Y

_ nXxy) —Cx)Cy

N v SO 0 \'OB 414 0 0 70795396
5 9124 4562 25 83247376

10 10.806 108.06 100 116.769636
15 12.321 184.815 225 151.807041
20 15638 31276 400 244.547044
25 18.242 456.05 625 332.770564
= L2 30 24792 74376 900 614.643264

35 25.436 89026 1225 646.990096

140 124.773 2741.325 3500 2261.57042

B 8(2741.325)(140)(124.773)
~ /8(3500) — (140)2 - \/8(2261.57042) — (124.773)?

Fovteml

Pv\g_J\’L'{\VV\
Pyfs baRs - ;
from scipy import stats
x=(0,5,10,15,20,25,30,35]
y = [8.414,9.124,10.806,12.321,15.638,18.242,24.792,25.436]
slope, intercept, r value, p value, std err = stats.linregress(x, y)
print("slope = ", slope)
print("intercept = ", intercept)
print("correlation coefficient =

, I _value)

slope = 0.5312357142857143
intercept = 6.300000000000001
correlation coefficient = 0.9690801754643459

AVERAGE RATE OF CHANGE

The average rate of change of f(x) with respect to x as x changes from a to b is

fb) - f(a)
b—a
—
ﬁ Based on population projections for 2000 to 2050, the projected Hispanic population (in millions) for a certain country can be modeled by the exponential function
H(t) = 37.791(1.021)* -

where t = 0 corresponds to 2000 and 0 < t < 50. Use H to estimate the average rate of change in the Hispanic population from 2000 to 2010.

The years 2000 and 2010 correspond to t = 0 and t = 10, respectively

Tip: Use technology H(10) = H(0) _ 37.791(1021)!° — 37.791(1.021)°

10-0 10

—>

(37.791%1.021%*10-37.791%1.021%%0)/10 8.73
0.8729653294860398 ~ W = 0.873 Never round until the last step

Based on this model, the Hispanic population increased at an average
rate of approximately 873,000 people per year between 2000 and 2010

INSTANTANEOUS RATE OF CHANGE

Suppose a car is stopped at a traffic light. When the light turns green, the car begins to move along a straight road. Assume that the
distance traveled by the car is given by s(t) = 3t?,for 0 < t < 15 where t is time in seconds and s(t) is distance traveled in feet.

How do we find the exact velocity of the car at say, t = 107?

Velocity repre s(10 + h) — s(10)

3(10 + h)? — 3(10)?

ovmg and
velocity can

Interval Average velocity
= A= 101 s(10.1) — s(10) _ 306.03 — 300 _ 03
10.1 — 10 0.1
e 40 =101 5(10.01) — 5(10) _ 300.6003 — 300 _ o
10.01 — 10 0.01
e 0 £ T1003 s(10.001) — s(10) _ 300.060003 — 300 _ 60,0083
10.001 — 10 0.001

Table suggests that the velocity at t = 10 is 60 ft/sec.

Consider the following where h is small but not 0

s(10 + h) —s(10) s(10 + h) — s(10)
(10+h)—10 h

fast som
its dlrectl
be ne

h

_3(100 + 20h + h?) — 300

h

_ 300 + 60h + 3h% —300

_ 60h +3h% h(60+3h)

h

=60+ 3h

s(10 + h) —s(10)
m

h

= }11n3(60 + 3h) = 60 ft/sec

INSTANTANEOUS RATE OF CHANGE

The instantaneous rate of change for a function f when x = a is

I fla+h) —f(a)
im

h—0 h Difference Quotient
provided this limit exists fla+h) —f(a)
h

Alternate Form

The instantaneous rate of change for a function f when x = a can be written as

y f(b) — f(a)
im
b-a b—a

provided this limit exists

EXAMPLE

Suppose the total profit in hundreds of dollars from selling x items is given by P(x) = 2x? — 5x + 6. Find and interpret the following:

(a) The average rate of change of profitfromx =2tox = 4
(b) The average rate of change of profitfromx =2tox =3
(c) The instantaneous rate of change of profit with respect to the number produced when x = 2

P(4)—P(12) (2(4)?*-5M4)+6)—(2(2)>2-5(2)+6) P2+ h)—-P(2) - 22+h?-52+h)+6)—4
= lim = lim
4 —2 2 h—0 h h—0 h
18— 4
= 5 =7] (8+8h+2h2—10—5h+6)—4
= lim
h—0 h

The average rate of change of profit
fromx =2 tox = 4is $700 per item 202 + 3N
= lim
h—0 h
PB)-P(2) _2EB)*-53)+6)-(2(2)*-5(2)+6)
3-2 1 = lim(2h +3) =3

=9—-4=5
The instantaneous rate of change of profit with respect to the

The average rate of change of profit number of items produced when x = 2 is $300 per item
from x = 2 tox = 3 is $500 per item

SECANT AND TANGENT LINES

fx) y=£(x)

S(a+h fla+h)) V
The slope of the secant line of the graph of y = f(x)
containing the points (a, f(a)) and (a + h, f(a + h)) is
given by fla + h)-f(a)
fla+h) -f(a)
h Wy R (a, f(a))
Slope of secant line = average rate of change h
0 a a+hx
)

The slope of the tangent line of the graph of y = f(x)
at the point (a, f(a)) is given by

Secant lines
lim f(a + h) - f(a) Points slide

down graph.
h—0 h J

provided this limit exists. If this limit does not exist, -~
then there is no tangent at the point.

Slope of tangent line = instantaneous rate of change 0 x

DEFINITION OF THE DERIVATIVE

The derivative of the function f at x is defined as

f'(x) = lim

h—0

fx+h) = fx)
h

The function f'(x) represents the instantaneous rate of change of y = f(x) with respect to x
P g P

The function f'(x) represents the slope of the graph at any point x

If f'(x) is evaluated at the point x = a, then it represents the
slope of the curve, or the slope of the tangent line at that point

APPLICATIONS OF DERIVATIVES

o Rate of Change of Quantities
o Increasing and Decreasing Functions

¢ Maxima and Minima

Lpald ¥ure nako U duporiomt o wrdetand Yo Aot o}
fa ot op sedy tiwple
- e

2 aad ik D%c,wﬁ“ M

e Gradient Descent is a generic optimization algorithm capable of finding optimal solu-
tions to a wide range of problems. The general idea of Gradient Descent is to tweak
parameters iteratively in order to minimize a cost function.

® Suppose you are lost in the mountains in a dense fog, and you can only feel the slope
of the ground below your feet. A good strategy to get to the bottom of the valley
quickly is to go downhill in the direction of the steepest slope. This is exactly what
Gradient Descent does: it measures the local gradient of the error function with
regard to the parameter vector 6, and it goes in the direction of descending gradient.
Once the gradient is zero, you have reached a minimum!

@ Concretely, you start by filling 6 with random values (this is called random initializa-
tion). Then you improve it gradually, taking one baby step at a time, each step
attempting to decrease the cost function (e.g., the MSE), until the algorithm converges
to a minimum

Cost

A

Learning step

Minimum

Random A
initial value 6

An important parameter in Gradient Descent is the size of the steps, determined by the learning rate
hyperparameter. If the learning rate is too small, then the algorithm will have to go through many
iterations to converge, which will take a long time.

Start
“p W“’Wd_ e 00 swal
[—

%’MP

. 4
On the other hand, if the learning rate is too high, you might jump across the valley and end up on the
other side, possibly even higher up than you were before. This might make the algorithm diverge, with

larger and larger values, failing to find a good solution «

Cost

—»

Finally, not all cost functions look like nice, regular bowls. There may be holes, ridges, plateaus, and all
sorts of irregular terrains, making convergence to the minimum difficult. Figure shows the two main
challenges with Gradient Descent. If the random initialization starts the algorithm on the left, then it will
converge to a local minimum, which is not as good as the global minimum. If it starts on the right, then it
will take a very long time to cross the plateau. And if you stop too early, you will never reach the global
minimum.

Cost

A

Plateau

> 0

L
Global
minimum

- W deseenk Pt fatle

Local minimum

VISUALIZING GD : LEARNING RATE
AND LOSS F*""" =7 "%

Y (Prediction,—Actual) :
=1

Loss = 5% o

Target: Find optimal model parameters to minimize the Loss

d
Wnew = Woia — 1 aw Loss (Wold)
Descending with step coefficient 0.004 (iteration 50) Descending with step coefficient 0.05 (iteration 50)
30 30
flx) = %° * sin(x)) = 1% sin(x)
20 . 20
10 Start (2.5,3.7) 1 10 Start (2.5,3.7)

a0 : . . End(49-237), 5 ~ End (5.4,22.1)

Fortunately, the MSE cost function for a Linear Regression model happens to be a convex function, which
means that if you pick any two points on the curve, the line segment joining them never crosses the
curve. This implies that there are no local minima, just one global minimum. It is also a continuous
function with a slope that never changes abruptly. These two facts have a great consequence: Gradient
Descent is guaranteed to approach arbitrarily close the global minimum (if you wait long enough and if
the learning rate is not too high).

Nete ;-
When using Gradient Descent, you should ensure that all features have a similar scale (e.g., using Scikit-
Learn’s StandardScaler class), or else it will take much longer to converge.

— ot Grdietr Descent o~

—p
To implement Gradient Descent, you need to compute the gradient of the cost function with regard to
each model parameter 0j. In other words, you need to calculate how much the cost function will change if
you change 6j just a little bit. This is called a partial derivative. It is like asking “What is the slope of the
mountain under my feet if | face east?” and then asking the same question facing north (and so on for all
other dimensions, if you can imagine a universe with more than three dimensions). Below equation
computes the partial derivative of the cost function with regard to parameter 8j, noted 0 MSE(©) / 06j

mJIN ,: .
Mse (o)~ PACEAES ‘OU)]?—

&/\d.fufwwﬁ ,*aw @ we. hdew equakion do counpude
thav ol w ene . e camuwr Vedo¥ g MsE(6),
covdodvs ol the posttal Mme}mmwo»—
(wa {or @de pramdg) .

¥ MSELS)

o Pe

3 Msele) (- 2
N\ Msele) = 26 . m

¥ Mgele)
Y

x"(xB-4)

Nete ¢-

Notice that this formula involves calculations over the full training set X, at each Gradient Descent step!
This is why the algorithm is called Batch Gradient Descent: it uses the whole batch of training

data at every step (actually, Full Gradient Descent would probably be a better name). As a result it is
terribly slow on very large training sets (but we will see much faster Gradient Descent algorithms
shortly). However, Gradient Descent scales well with the number of features; training a Linear Regression
model when there are hundreds of thousands of features is much faster using Gradient Descent than

using the Normal Equation or SVD decomposition.

p e hauwe e :azadfwjr Vuko!, Olmaw Fe-iu.h ufl«u(ﬂ,
Im aao M e OFPG’W'C- Arediove o ?er devon Wl « s
Maannis S-ubt’?a.lﬁm% VoME(8) fremi® wl U Whxwe e
M«L&? Aake, r" Woﬁd'o PLow - m&tﬁyl«& Mg, ?MW
Vedko! bﬁl 1 fo dubwmdee e See of b dpon

14 4 14 4 14

124 124 12

d

L" wal‘ Aescnd it varlowu Mxmf‘*? Aotes
p

On the left, the learning rate is too low: the algorithm will eventually reach the solution, but it will take a
long time. In the middle, the learning rate looks pretty good: in just a few iterations, it has already
converged to the solution. On the right, the learning rate is too high: the algorithm diverges, jumping all
over the place and actually getting further and further away from the solution at every step.

‘-—b{-o{—?ndafasedua&u&? mka&ummm G seaeche.
—e
Convergence Rate % —

When the cost function is convex and its slope does not change abruptly (as is the case for the MSE cost
function), Batch Gradient Descent with a fixed learning rate will eventually converge to the optimal

solution, but you may have to wait a while: it can take O(1/€) iterations to reach the optimum within a
range of €, depending on theshape of the cost function. If you divide the tolerance by 10 to have a more
precise solution, then the algorithm may have to run about 10 times longer.

— Stodradtc %éqaﬁud Descend ;-

@ The main problem with Batch Gradient Descent is the fact that it uses the whole training set to compute
the gradients at every step, which makes it very slow when the training set is large. At the opposite
extreme, Stochastic Gradient Descent picks a random instance in the training set at every step and
computes the gradients based only on that single instance. Obviously, working on a single instance at a
time makes the algorithm much faster because it has very little data to manipulate at every itera-
tion. It also makes it possible to train on huge training sets, since only one instance needs to be in
memory at each iteration,

® On the other hand, due to its stochastic (i.e., random) nature, this algorithm is much less regular than
Batch Gradient Descent: instead of gently decreasing until it reaches the minimum, the cost function will
bounce up and down, decreasing only on average. Over time it will end up very close to the minimum, but
once it gets there it will continue to bounce around, never settling down (see Figure). So once the algo-
rithm stops, the final parameter values are good, but not optimal.

Cost

Lo i stechuontre ?\am“mt‘ Duowr)ea.dv Huf?mou?. -ka
d wuwat fastas bub A Ml oo Aokt - o~

Whaew .,MMZ, Bakch WMM
Ly

When the cost function is very irregular (as in Figure 4-6), this can actually help the algorithm jump out of
local minima, so Stochastic Gradient Descent has a better chance of finding the global minimum than
Batch Gradient Descent does.

Ly

To perform Linear Regression using Stochastic GD with Scikit-Learn, you can use the SGDRegressor
class, which defaults to optimizing the squared error cost function.

Lwsiead ° oourpukivg Hue. Grad lewks pared Ow e fuod
Wm?, st (a8 1 Botel GD) o7 based On Jugt One
bstone, (s S Hocdwokbte D), M- Baterv Gb wm
the ?m"fw—ﬂ‘em grald rormdeon, Sds O Juy tomce ames
MO —battug o

P Ml - Badon W Durcent @

P e main Qa(ﬂa/u.l"aaz. ca Mol -bateh D Ove Stodrastrc
Ctb&sﬂ\ara.cw oM ?rdr & paformane booxt (>
hasdroase th"w&?MEew 9& ety e 9‘«209-‘1"9’”-4) u]owfa-l#r
Vol % wrw?(GP Us .

381 _a— Stochastic

361 —— Mini-batch “PC?ZQNM Descend ‘PW
3.4{ —e— Batch

913,2-

3.0

w f&xwey. S«FM

2.8 1
2.6 1

2.4 A

250 275 300 325 350 375 400 425 450

Figure shows the paths taken by the three Gradient Descent algorithms in parameter space during
training. They all end up near the minimum, but Batch GD’s path actually stops at the minimum, while
both Stochastic GD and Mini-batch GD continue to walk around.

Table 4-1. Comparison of algorithms for Linear Regression

Algorithm Large m Out-of-core support Largen Hyperparams Scaling required Scikit-Learn

Normal Equation Fast No Slow 0 No N/A

SVD Fast No Slow 0 No LinearRegression
Batch GD Slow No Fast 2 Yes SGDRegressor
Stochastic GD Fast Yes Fast >2 Yes SGDRegressor
Mini-batchGD Fast Yes Fast >2 Yes SGDRegressor

M =P numbe o ﬂaﬁmﬂmq nwtone
), =2 b Q}/ Tmi—uﬁzé
L thue (o albwpst 1o Otﬁﬁum/uc, GtéAU +‘ra43/-.91)?-

—D PG"L'-J,VVD wilad Rygaunstfonn -
What |¥lyour data is more complex than a straight line? Surprisingly, you can use a linear model to fit

nonlinear data. A simple way to do this is to add powers of each feature as new features, then train a
linear model on this extended set of features. This technique is called Polynomial Regression.

“® the Normal Equation can only perform Linear Regression, the Gradient Descent algorithms can be
used to train many other models, as we will see.

—» A quadratic equation is of the formy = ax >+ bx + c.
Lo (e 1‘@’ Pa—tﬁwewﬁa.l M-ra,uMG—uu

—5 "\ © LOD
— X = €*VLPoW«W4(m:13
—2 Y T Oe5*x¥*2 X+ 21 vip Rawdom .sand (m), 1)

10

8 A, "b%t/w/\d.@i'(d S iea
6 4 -
¥ . . y Cmﬂd I/UOCD?, dataged
4'_..-' <] c“f
2. - -
0 > '.'
-3 - -1 0 1 2 3
X1

P Hue AﬁXQA%r~k e Wil newat f%t: Hh date, propely
A0 W wae ek - leasang Potay«)nnﬂa!fauxkuu;; Lokt o
Tovafotm e Han?, It | ogtdﬁx\z, e squene (Secovd
G\uaku— ?d?mw.&..l)o't 20U -feah..u.b bou‘L*[“f/\bm:M?v‘?Cﬂl‘
os Oo e -[x_ahnﬂ.

>>> from sklearn.preprocessing import PolynomialFeatures

>>> poly features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)

>>> X[0]

array([-0.75275929])

>>> X_poly[0]

array([-0.75275929, 0.56664654])

LB)(_.FQL«(} nwew wukbalne e oaﬁaﬂvml {wm G'lxpmm
‘Sc1uqaa 61 g —kah;kz - New agna com Hta Lvuas,

Fkuaﬂzkkof' medd o A Qgtend <d rﬁvbﬂuvabu? dateu
>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X_poly, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([1.78134581]), array([[0.93366893, 0.56456263]]))

10
(_9 —— Predictions

L e quatiem 9& s qzo'b’é"f—.’w O° 23w, + 18
Whern fn fad Hae owgfm W&{w w oy

n

= 0-Sn?+ L0, +2-0 + 3‘6"“9'?0“”‘ woke.

—~— L,QBAWSVﬁCMM S -
N

—P
If you perform high-degree Polynomial Regression, you will likely fit the training data much better than

with plain Linear Regression. For example, Figure applies a 300-degree polynomial model to the
preceding training data, and compares the result with a pure linear model and a quadratic model (second-
degree polynomial). Notice how the 300-degree polynomial model wiggles around to get as close as
possible to the training instances.

10

—
This high-degree Polynomial Regression model is severely overfitting the training data, while the linear
model is underfitting it. The model that will generalize best in this case is the quadratic model, which
makes sense because the data was generated using a quadratic model. But in general you won't know
what function generated the data, so how can you decide how complex your model should be? How can
you tell that your model is overfitting or underfitting the data?

Le
%ﬂcadw extOnmatc e& @ wwodd ‘s g,muo.kﬁzu:ew pformance

O e AU \fMﬂolaﬂaeﬂ' ,1 o nwow perforis
a,cwfalm?, o Yhe (aog- Valldadlor, nadaicd, Hren Fow

nuodd G wd&f‘qﬂ—"“ﬁ’ 4& o pa_q(o—ﬂm Pooﬂg ev beth
Mv&mﬁm" mewwa/a o e W e a
wmedd w 4oo S’i‘;’w.fh. er +oo OQ'MNbO].MC'

Lo

Another way to tell is to look at the learning curves: these are plots of the model’'s performance on the
training set and the validation set as a function of the training set size (or the training iteration). To
generate the plots, train the model several times on different sized subsets of the training set. The
following code defines a function that, given some training data, plots the learning curves of a model:

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

def plot_learning_curves(model, X, y):
X_train, X_wval, y_train, y_val = train_test_split(X, vy, test_size=0.2)
train_errors, val_errors = [], []
for m in range(l, len(X_train)):
model. fit(X_train[:m], y_train[:m])
y_train_predict = model.predict(X_train[:m])
y_val_predict = model.predict(X_val)
train_errors.append(mean_squared_error(y_train[:m], y_train_predict))
val_errors.append(mean_squared_error(y_val, y_val_predict))
plt.plot(np.sgrt(train_errors), "r-+", linewidth=2, label="train")
plt.plot(np.sqrt(val_errors), "b-", linewidth=32, label="val")

Let’s look at the learning curves of the plain Linear Regression model (a straight line;
see Figure 4-15):

lin_reg = LinearRegression()
plot_learning_curves{lin_reg, X, y)

3.0

—— train

2.5 1 val

0 10 20 30 40 50 60 70 80
Training set size

Figure 4-15. Learning curves

Le‘j,{&m modd G wndinfittlng the trafulug Adba, odding
OAe T}aﬁdma amnples Mvw*ml.fo-‘iw need O A
78 mmfux wwdd o7 oovne-ufaw;m betity featores

Wthg Pt vt -
W F,u,rrrm wd &

L> One nﬂw« {o ww,)'uw_e, o W&f«.ﬂw? medd @ o
{—ud or muose tswwf’v? Aok vl e
\/'aufckaﬁe'vu DAY Aol e 'l'p.a,owf:‘w_? err o7 -

Note *-

L’b?//umﬂo&w\%&. nweed s wvwv)‘-umka’ Wi U WM? NPV VY- TP
elonit, ad Rdue e brase (Vs R iu.dau'a.nn.g, @
me c.e'vw-flwlw cnerrt e bilos d‘a sedarces Vesman ey -

—P Regulosized Litwear Models -

— q
a good way to reduce overfitting is to regularize the model (i.e., to constrain it): the fewer degrees of
freedom it has, the harder it will be for it to overfit the data. A simple way to regularize a polynomial
model is to reduce the number of polynomial degrees.
For a linear model, regularization is typically achieved by constraining the weights of the model. We will
now look at Ridge Regression, Lasso Regression, and Elastic Net, which implement three different ways
to constrain the weights.

U ridge Rugrovein = gidge Rugruston . a Mgedanizd Voo
o&, hireax ﬂa&m&’gm Q Wﬁzﬂm o 2qual ‘o
h 2 o
4 : addd 0o W . :
{',i;& V) Leﬁﬁ"-—fumai’ﬁ-n J-w«-foxu,s e
Mmfw& OJ?O'YI’J"'JM fo wetf 9""-13. fut'd'lu, date, but
GAsD kuf) the vvodd wuahis as ol oL fe«mbu_

Ww&mmwm awwaml‘

110 T2 e W\DMHMO’M&A@L

muJuLWWum hca/ux/ngn

JW) < Msele) + oc% é 2
u-/.]a
/

Nete ¢-

—® |t is important to scale the data (e.g., using a StandardScaler) before performing Ridge Regression, as it
is sensitive to the scale of the input features. This is true of most regularized models.

- fre'm S un o Unear _ mod d 3/-4190347 :SQDW{

— medel = S&D&ﬁ«w(rgwl}? = "R2")

(® Lasso Yo . leagt Abseluic y ondl

just like Ridge Regression, it adds a regularization term to the cost function, but it uses the 41 norm
of the weight vector instead of half the square of the 2 norm ,

4%
Tz Melo)+s |Gl
et

—0

An important characteristic of Lasso Regression is that it tends to eliminate the weights of the least
important features (i.e., set them to zero).Lasso Regression automatically performs feature selection and
outputs a sparse model (i.e., with few nonzero feature weights).

Here is a small Scikit-Learn example using the Lasso class:

>>»> from sklearn.linear_model import Lasso
>>> lasso_reg = Lasso(alpha=0.1)

>>> lasso_reg.fit(X, vy)

>>> lasso_reg.predict([[1.5]])
array([1.53788174])

l‘b‘dw wukd gteaqd wie Sﬁbﬂeawwm’(f e i)

() erastic Nt © -

—&
Elastic Net is a middle ground between Ridge Regression and Lasso Regression. The regularization term
is a simple mix of both Ridge and Lasso's regularization terms, and you can control the mix ratio r. When
r= 0, Elastic Net is equivalent to Ridge Regression, and whenr = 1, it is equivalent to Lasso Regression o

7 n 2
ey~ MSElo)+ 7 £ | &7l + 17¥ x = Ui
I?"-'J’ Q =1

—»
so generally you should avoid plain Linear Regression. Ridge is a good default, but if you suspect that

only a few features are useful, you should prefer Lasso or Elastic Net because they tend to reduce the
useless features’ weights down to zero,Elastic Net is preferred over Lasso because Lasso may behave
erratically when the number of features is greater than the number of training instances or when several
features are strongly correlated.

Here is a short example that uses Scikit-Learn’s ElasticNet (11_ratio corresponds to
the mix ratio r):

>>> from sklearn.linear_model import ElasticNet %5 1 ad a
>>> elastic_net = ElasticNet(alpha=0.1, 11_ratio=0.5) Pate
>>> elastic_net.fit(X, y)

>>> elastic_net.predict([[1.5]])

array([1.54333232])

O Bany stoppilg T
A very different way to regularize iterative learning algorithms such as Gradient Descent is to stop
training as soon as the validation error reaches a minimum. This is called early stopping.

gy M__...-! - \/alidation set
3.5 1 ¢ i
-== Training set = CMAZ' ﬂe'rpwv?
3.0 1
N.ﬂ/ulanzabim
W 2.5 1
s Best model
o 2.0
1.5 1 —
.............. B snsans s n PP T s s sssannnsnsssnsnnanannns
1.0" !'\-.‘_----
0 100 200 300 400 500

Nede -

With Stochastic and Mini-batch Gradient Descent, the curves are not so smooth, and it may be hard to
know whether you have reached the minimum or not. One solution is to stop only after the validation
error has been above the minimum for some time (when you are confident that the model will not do any
better), then roll back the model parameters to the point where the validation error was at a minimum.

from sklearn.base import clone
from sklearn.pipeline import Pipeline
from sklearn.linear_model import SGDRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import PolynomialFeatures,StandardScaler
import numpy as np
from math import inf
#tdata prepration
= 100
X = 6 * np.random.rand(m, 1) - 3
y = 8.5 * X**2 + X + 2 + np.random.randn(m, 1)

X_train,X_val,y train,y_val=train_test split(X,y,test size=0.2,random state=42)

poly pipe=Pipeline(][4
("poly_feat”,PolynomialFeatures(degree=90, 1ncL“f“,ﬁ
("STd",StandardScaler())

1)
x_poly scaled=poly pipe.fit_transform(X_train)
X_val_scaled=poly pipe.transform(X_val)

sgd_reg = SGDRegressor(max_iter=1, warm_start=True,
penalty=None, Learning_rate="constant”, eta6=0.0005)

minimum_val_error = float("inf")
best_epoch = None
best_model = None

for epoch in range(1000):
sgd_reg.fit(x_poly_scaled,y_train)
y_poly_pred=sgd_reg.predict(x_val_scaled)
error=mean_squared_error(y_val,y poly pred)
if error<minimum_val_error:
minimum_val_error=error
best_epoch=epoch
best_model=clone(sgd_reg)

O Loghbic apuudon t- WA apuadde ok G uad for

Lowelicotion ok
—b

Logistic Regression (also called Logit Regression) is commonly used to estimate the probability that an
instance belongs to a particular class (e.g., what is the probability that this email is spam?). If the
estimated probability is greater than 50%, then the model predicts that the instance belongs to that class
(called the positive class, labeled “1”), and otherwise it predicts that it does not (i.e., it belongs to the
negative class, labeled “0"). This makes it a binary classifier.

Lo Jv\.(’l‘ba@_. [/?Vmg WM deJJ, Loa&'h'c. W’M nod.
cowspites o ek sm oy Gt featius (plus o bras tam),
but (natead %mmﬁqm Reevtt d/fﬁ.bb!{?- Inke e
Loveau @.amw% medid ded, O ewkpuls the Wgube & e
Resu il

F.—.— he(m) = & (270) .—-@LGanfih‘c. W’m wedu

&—b érfca,ms»co[W‘en hat oudpul ke bewcon

O ond) -
“((N e |
t) = = ¥ ~ P
el || P e
1.00 1-- S . e
0.751 .boa»mhc- funmdion
0.50-
0.25
0.00
-10.0 = -5.0 ~25 0.0 25 5.0 75 10.0

t

c_-P

~
Once the Logistic Regression model has estimated the probability p = h8(x) that an instance x belongs to
the positive class, it can make its prediction y easily

1"l Zpzes

D Notie thar €(4) <05 whn t<0, amd 6 () 205 Whewn

120, so b@‘a»;d’ffb R»caxum‘ow ode) Fv‘wuok LY
20 & r)Qtr‘f-h"ou ovd O 3.’ A a a/uanﬁuu.-
S

The score t is often called the logit. The name comes from the fact that the logit function, defined as
logit(p) = log(p / (1 = p)), is the inverse of the logistic function. Indeed, if you compute the logit of the
estimated probability p, you will find that the result is t. The logit is also called the log-odds, since it is the

log of the ratio between the estimated probability for the positive class and the estimated probability for
the negative class.

D ¢~ = |-P 9{,98(@‘17): ’“’3(%’3]
| <A b@g(t“P/PJ

D |t

0
0=
L

—»

The objective of training is to set the parameter vector 6 so that the model estimates high probabilities

for positive instances (y = 1) and low probabilities for negative instances (y = 0). This idea is captured by

the cost function shown in Equation for a single training instance x o

Moy (B) & ger Pogt fumetion

—>

This cost function makes sense because —log(t) grows very large when t approaches 0, so the cost will
be large if the model estimates a probability close to 0 for a positive instance, and it will also be very
large if the model estimates a probability close to 1 for a negative instance. On the other hand, —log(t) is
close to 0 when tis close to 1, so the cost will be close to 0 if the estimated probability is close to 0 for a
negative instance or close to 1 for a positive instance, which is precisely what we want.

Lo ¢e. (oev Wo-w oy WMe whele ‘Tﬂﬁ/ﬁ/\? el & e
GJU\JM%,L mewmﬁv‘é LWCM"B{'CAOVVIM
Wattten, as&au exprecson coled (o5 Lo,

3_(‘9)‘__ _{ é [\a[.t)w:l(pu +'(_L" LIJJ J.ea(l- AU))I
Lg: I,QT}HC, ﬁ_;.aaulffew oKt fkuﬁm

this cost function is convex, so Gradient Descent (or any other optimization algorithm) is guaranteed to
find the global minimum (if the learning rate is not too large and you wait long enough).

"91&3‘?%%1‘0 AT fomhivy fcw”ax dexivokiaees
(i)

2 gl L i [c' (672] -9%) 4
093

—B
for each instance it computes the prediction error and multiplies it by the jth feature value, and then it
computes the average over all training instances. Once you have the gradient vector containing all
the partial derivatives, you can use it in the Batch Gradient Descent algorithm,

pgistic Regre 5=

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression
import pandas as pd

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

data=load_iris()

new_data=pd.DataFrame(data["data®
new_data.columns=data.feature_nam
new_data["target’]J=data["target™]

X=new_data.iloc[:,:4]
y=(new_data["target”]==2

ﬁ%ﬂ .factorize(y) '.u-'

o

“y=y[e]
model=LogisticRegression() H*t'

X_train,x_test,y_train,y_test=train_test_split(X,y)
model.fit(X_train,y_train)

y_pred=model.predict(x_test)

accuracy_scorefywtest,y_predﬂ

v 0.0s

©.9736842105263158

,_9%,,% Rw—few - e w%&,-b'c. W%WMW

be r&wmhwf o suppoTt nuuhiple carges diudly) Oithest

o b and wnbine nwdhple bl Lot fier S
Ml b @ld Aefhran Rgresion, o Hulbinoniad Leg,&iv’c,
)Q.Lazum’tm-

when given an instance x, the Softmax Regression model first computes a score sk(x) for each class k,
then estimates the probability of each class by applying the softmax function (also called the normalized

exponential) to the scores. The equation to compute sk(x) should look familiar, as it is just like the
equation for Linear Regression prediction «

L (D P S

S,((’ﬂf)f %Te(.)

LNote Hrat eode Aars has g8 oovw dudicakd pasamet®

Veekot 900- old Huxe Vuwhon s lafr'?cau.a_ soud ax
% v o ‘oamvaltx Mok -

0

e

Once you have computed the score of every class for the instance x, you can estimate the probability Bk
that the instance belongs to class k by running the scores through the softmax function (Equation). The
function computes the exponential of every score, then normalizes them (dividing by the sum of all the

exponentials). The scores are generally called logits or log-odds (although they are actually unnormal-
ized log-odds).

ESKU.,J] N2> Mo ¢ harses
'S\K: é'(,scn)).(c &, sug_,) = U qvu}ﬁrm u}
N Cs (]

2 -I'ho,&oom eadn Lhoks
J=1 for e Gurame x.

€[$0W) => esatmated ‘rrebamul-a, Hrat Yhe Culomie o

W‘&&bmk amu-w-lw. &LOALA gammﬂ%{e-/

puu{(ﬁﬂ/l/u

Just like the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the
highest estimated probability (which is simply the class with the highest score)

O C(,SC”'))K = X S, 00) = (’QL‘Q)TX
1 m\%ﬂw G‘*ﬂ‘(4, a&a;w ()

K

L‘D'H/\-b CU-%WW WWW NI VVTR %GLVM&&UL

thak mayfmizes a -ﬁ/vw{;ma

Nete -

The Softmax Regression classifier predicts only one class at a time (i.e., it is multiclass, not multioutput),
so it should be used only with mutually exclusive classes, such as different types of plants. You cannot
use it to recognize multiple people in one picture.

_ : g{f?lgm_i_.
(‘;uf!omﬂ: Vicko? Madatnes)

_9

A Support Vector Machine (SVM) is a powerful and versatile Machine Learning model, capable of
performing linear or nonlinear classification, regression, and even outlier detection. It is one of the most
popular models in Machine Learning, and anyone interested in Machine Learning should have it in their
toolbox. SVMs are particularly well suited for classification of complex small- or medium-sized datasets.

2 Jnea SUM ‘-

2.0
m |ris versicolor -

£ 159 Iris setosa

=]

2101

8 I

& 051 4

I
0.0 , : ; F
0 1 2 3 4 5 0
\ Petal length Petal length
|

| Lf?mwwﬁq,. , SUM
,/La.ﬂ%o Wm Mé‘mﬁevu

—9&’@1»3/(wa Zhowe Y decl G pouwnmdesies eél«,w
Faw‘f’bu Wean elowt flas . e woedd lhese dlecs G
boun % by 4ne deshed e & so
bad ot dees et ewen Scperate Yhe o elasses FTW
the, otha o moddys wo Tk P MMMM;?
St bwt Hua gductilon, beundRis Come So LAeke
o e (stoamus et Mg models poiU m,@w
wWld oy M tames

the solid line in the plot on the right represents the decision boundary of an SVM classifier; this line not
only separates the two classes but also stays as far away from the closest training instances as
possible. You can think of an SVM classifier as fitting the widest possible street (represented by the
parallel dashed lines) between the classes. This is called large margin classification.

—b :\t:ilwrmﬂmma, © do feahue /sm.lf\«a, b«am Wﬂ,?f

(LpSVM e o7k b\d ngu\dfv\a, Iy Qf’-ﬁ"vmll l/\@mipw mat
Sv‘sowkx data }a@‘fwh o df,W Masges:
key toums ¢

—p

A hyperplane is a decision boundary that separates data points into different classes in a high-
dimensional space. In two-dimensional space, a hyperplane is simply a line that separates the data
points into two classes. In three-dimensional space, a hyperplane is a plane that separates the data
points into two classes. Similarly, in N-dimensional space, a hyperplane has (N-1)-dimensions.

ngzmbau Wa.ﬂy-? WD A ;—fdJ.oJ,m 'ﬂafa]ow
J’Inbd{_g).LBW‘DaJﬂJ peinik e mﬁiﬂao}m
Wdr:a};tnm& a omifiol og b-wu%&? o ent Class,
wwile datn Pgimme sa'ouez,whq_ l"mwlum
o Mﬁ'm%m«a&%wmm LABLA

L -
Margin (gap between decision il-’?_‘EO) l: V\C,dh’)ﬂ - 141444& Ouee, m
boundary and hyperplanes)
Support vectors dalﬂ PGOI 1,5 |1'G| we’ E!g .21

g fo e duchlous be«.AAAAa.N?,

X2

Decision boundary

Hyperplane
Hyperplane - for second L) ?‘4. 'S ‘}M.
for first class class

D Mosgin ¢-

A margin is the distance between the decision boundary (hyperplane) and the closest data points from
each class. The goal of SVMs is to maximize this margin while minimizing classification errors. A larger
margin indicates a greater degree of confidence in the classification, as it means that there is a larger
gap between the decision boundary and the closest data points from each class. The margin is a
measure of how well-separated the classes are in feature space. SVMs are designed to find the

hyperplane that maximizes this margin, which is why they are sometimes referred to as maximum-margin
classifiers.

P _Segr Ml Clansd fration 1o

If we strictly impose that all instances must be off the street and on the right side, this is called hard

margin classification. There are two main issues with hard margin classification. First, it only works if the
data is linearly separable. Second, it is sensitive to outliers.

2.0 -

Outlier - R w
£ 1.51 'Y “ - | L T . ™
E . ' . "‘--.___ "'--.__h | |
=,0| Impossible! =, | Y v
E h“‘hﬁ_“

3= o - Outlier T
0.0 T d T T r T v v - :
0 1 2 3 4 5 0 ¥ 2 3 4 5

Petal length Petal length

o o

on the left, it is impossible to find a hard margin; on the right, the decision boundary ends up
very different from the one we saw in without the outlier, and it will probably not generalize as well.

To avoid these issues, use a more flexible model. The objective is to find a good balance between

keeping the street as large as possible and limiting the margin violations (i.e., instances that end up in the
middle of the street or even on the wrong side). This is called soft margin classification.

“SWhen creating an SVM model using Scikit-Learn, we can specify a number of hyperparameters. C is one
of those hyperparameters. If we set it to a low value, then we end up with the model on the left of Figure.
With a high value, we get the model on the right. Margin violations are bad. It's usually better to have few
of them. However, in this case the model on the left has a lot of margin violations but will probably
generalize better.

=1 ¢

A |ris virginica A

g
in

Petal width
=N
w [=]

1.0

400 425 450 475 500 525 550 5.75

400 425 450 4.75 500 525 550 575
Petal length

Petal length

meaL asgn (L) Ve foo Mg Vio\atiem (Rigt)

b) ot VM wmodd I Mﬁm&, gov o trg Aegusasi
Lo Uutuke w?éh'o Xz.a,q,m,-f'm Mosiflus sum Aorsitfess
R (et Sudput fmaw{wz'a for eaur Ao

W I Skl woe houme LHweasase oand e o UL

e vidd dﬁ-’aakb? e bau fwufo’f’af’.ﬁﬁ

o Instead of using the LinearSVC class, we could use the SVC class with a linear kernel. When creating the
SVC model, we would write SVC(kernel="linear", C=1). Or we could use the SGDClassifier class, with
SGDClassifier(loss="hinge", alpha=1/(m*C)). This applies regular Stochastic Gradient Descent to train a
linear SVM classifier. It does not converge as fast as the LinearSVC class, but it can be useful to handle
online classification tasks or huge datasets that do not fit in memory (out-of-core training).

— Now lvuak Sy M{.‘caﬂg_w?—-

PR

—D
Although linear SVM classifiers are efficient and work surprisingly well in many cases, many datasets are

not even close to being linearly separable. One approach to handling nonlinear datasets is to add more
features, such as polynomial features, in some cases this can result in a linearly separable dataset.

164 = -
12 -
X2
- -
e = - - - = - = - 8
4 4 & s
s rs
0
—a S 0 2 a —4 -2 0 2 4
X1 X1
Q
LBM? {e_adum 0 ok o datesd Llouwasly
exAb le.

Consider the left plot in Figure: it represents a simple dataset with just one feature, x1. This dataset is not
linearly separable, as you can see. But if you add a second feature x2= (x1) the resulting 2D dataset is
perfectly linearly separable.

—Bhpw kesvie] °~ w,,?_ F%W featrte %walc

to emfw and Lo ootk Mot wir oM choehs 9],
ML olgotitums (vor Juat sW)- ar 4 Lew potprovaial
filﬁfu.z,, & wethod canwet ol Wi \/&-ra, rupln

dakasets, omnd win Qlf\ﬁ:a’f/v f&'faywvm"al digfue, It frakes.

@WWM&R%W, MML?A?,MVW,OM Yoo
Hewo - {oﬂvm)ﬂa.,wm u»ﬁ,a Sfun,s-awwm a,rp’l?w

MBrcudos Yathematiod Wczuﬁ. coMed Mre Ko
4ol o

The kernel trick makes it possible to get the same result as if you had added many polynomial features,
even with very high-degree polynomials, without actually having to add them. So there is no combinatorial
explosion of the number of features because you don't actually add any features. This trick is
implemented by the SVC class.

—o friom ¢ ke, SYm gmfm SVE

’)etar-k.wma?ds‘um_aa{ = P"WM(‘E
C*scodn, Sbamdmgta«u&()),
(“sve®, SVC ((kesamed = "potyn, (5,

o s dyeale
1)

¢ “todo’ howo i
I
Vs bewd.a?m &UJW)

uwﬁmﬁerme faced LofH

o Uhean, dodaeds

ff-a (e,R) = QMP(—'Y“ x-i"z'j T_BWM
0 = 2ard was K

‘Ulf- s komce 2= -1 G U lotated ot a dtome
Babfw{fimtamdnwv,qﬂdzm;“ [G

4= Lo oqy e
feodtiies
(-0:3% 2]__
%5-—.—, e, 0030 u

- y=0.1,C=0.001 y=0.1,C=1000
‘ | | |
1.0 ‘ e L f A =
LI | L |
l . - .""lf .’ A ’. L '-.. .' A
XZO ° -...- “‘ L L -.. “ g :.-- ‘l‘ s .-. " A
- g ® A i O O . By " A LB e SN
T SR LI . O CEE
'y A
-0.5 ““ :“::lia ‘l‘ :‘“‘:iﬁs
-1.0 :
- y=5,C=0.001 y=5,C=1000
L] L]
1.0 s s ") "
B 1 LI | = LI |
R EHE : i)
x> R GmRwl 4, A NG e .o
| m " ® A SN A A . " " . R A &
0.0 s : a& “ ‘. = 4 : . A f‘ 2: : ‘. A 4 : =
A 'y
-05 SR O g Prutaia,
-1.0 : ! . . : . ! : ; ; . ; :
-15 -10 -05 00 05 10 1.5 20 -15 -10 -05 00 05 10 15 2.0
X1 X1

(«QSVH M{ﬁm (Aﬂn’l?/’\-a an RBY e

Lo et °-
—»
Other kernels exist but are used much more rarely. Some kernels are specialized for specific data
structures. String kernels are sometimes used when classifying text documents or DNA sequences (e.g.,
using the string subsequence kernel or kernels based on the Levenshtein distance).

-»

With so many kernels to choose from, how can you decide which one to use? As a rule of thumb, you
should always try the linear kernel first (remember that LinearSVC is much faster than
SVC(kernel="linear")), especially if the training set is very large or if it has plenty of features. If the training
set is not too large, you should also try the Gaussian RBF kernel; it works well in most cases. Then

if you have spare time and computing power, you can experiment with a few other kernels, using cross-
validation and grid search. You'd want to experiment like that especially if there are kernels specialized
for your training set’s data structure.

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Class Time complexity Out-of-core support Scaling required Kernel trick
LinearsSvc 0(m x n) No Yes No —& Lbuineas
SGDClassifier 0O(mxn) Yes Yes No e
SVC 0(m* x n) to O(m* x n) No Yes Yes—e Jwbsvm

Mo—mwz,

EE,M 8 509%:' S wfi)m’% (e avd nen Lowan

_DW-

To use SVMs for regression instead of classification, the trick is to reverse the objective: instead of trying
to fit the largest possible street between two classes while limiting margin violations, SVM Regression
tries to fit as many instances as possible on the street while limiting margin violations (i.e., instances off
the street). The width of the street is controlled by a hyperparameter, €.

#@MDWQVMWGWWM rafiwd on sanm
Jodem Lnear gaka, One Wit @ Lwt?z, maﬂ.af}’nLG:l-s)
ovd et Wit o “wall Mol (eco0s)

=15 @C-Mfm

0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0

~&
Adding more training instances within the margin does not affect the model’s predictions; thus, the model
is said to be e-insensitive.

> v cow e MWWU’MWWMW%U‘T
W\Poxtfma W sV R cdau-

—® {rom 8kav. sV mpoTh Lear sVR € deprilon
— éwfm._lﬂ.a = [fmsvﬂ LqJ?fLQ’VLSL B'S-_)
—> svm.- xeq- €T (X V)

—®

To tackle nonlinear regression tasks, you can use a kernelized SVM model. Figure shows SVM
Regression on a random quadratic training set, using a second-degree polynomial kernel. There is little

regularization in the left plot (i.e., a large C value), and much more regularization in the right plot (i.e., a
small C value).

degree=2,C=100,e=0.1 degree=2,C=0.01,=0.1

~1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

c—é*ffem gl ez, Sym &.z-fm’-}‘ SVR

=" EMM-PMK_ X/Ja—"- SVKLKGXMLLS L f&{a‘l 3 d"‘a’u‘e:Z‘ c=100,

efﬁ'wn: 03)
—»
The SVR class is the regression equivalent of the SVC class, and the LinearSVR class is the regression
equivalent of the LinearSVC class. The LinearSVR class scales linearly with the size of the training set

(just like the LinearSVC class), while the SVR class gets much too slow when the training set grows large
(just like the SVC class).

chapicc - & 1~ [Dectstor Trees]

— Do {yee com ‘LUK oetlv pountfraation and
Rugpusion toxksy and oamy vwaaboudput B - B G
rew(uu a.kq{o‘ vt eam, ff.‘b wore cevwaplia Sotegets.

—> Lk bWid & ddson e anad see. Lo U madee
Shens . W v & dotorst JOv 4a and -kmewu
F,U:d l_fw.ahna ond pd-d-! wirddbin -

petal Iength (cm) <= 2.45
gini = 0.667
samples = 150
value = [50, 50, 50]
class = setosa

True

\:alse o o
it 0
petal width (cm) <= 175 lKWW*a, o tames

= 0.5

—

Suppose you find an iris flower and you want to classify it. You start at the root node (depth 0, at the

top): this node asks whether the flower's petal length is smaller than 2.45 cm. If it is, then you move down
to the root's left child node (depth 1, left). In this case, it is a leaf so it does not ask any questions: simply
look at the predicted class for that node, and the Decision Tree predicts that your flower is an Iris setosa
(class=setosa)e

Now suppose you find another flower, and this time the petal length is greater than 2.45 cm. You must
move down to the root'’s right child node (depth 1, right), which is not a leaf node, so the node asks
another question: is the petal width smaller than 1.75 cm? If it is, then your flower is most likely an Iris
versicolor (depth 2, left). If not, it is likely an Iris virginica (depth 2, right).

—»
Decision Trees is that they require very little data preparation. In fact, they don't require feature scaling or
centering at all.

node’sgini attribute measures its impurity: a node is “pure” (gini=0) if all training instances it applies to
belong to the same class. For example, since the depth-1 left node applies only to Iris setosa training
instances, it is pure and its gini score is 0.

B 5% &MWD% o
z
Wﬁ\m (,Qi.): d - Z;‘Pillc K otaneu MW bt
K=

’bwﬁ,w\,&w ¥ mbuo&

eq’ - T{,mu {o‘f G\f—f"""'z p“-({’t yvodle.
i - Ot - (= o1

Netcls
Scikit-Learn uses the CART algorithm, which produces only binary trees: nonleaf nodes always have two

children (i.e., questions only have yes/no answers). However, other algorithms such as ID3 can produce
Decision Trees with nodes that have more than two children

e 3.0

2.54

2.0 1

1.54

Petal width

0.5 4 (Depth=2):

0.0

0 1 2 3 4 5 6 7
Petal length

Figure shows this Decision Tree's decision boundaries. The thick vertical line represents the decision
boundary of the root node (depth 0): petal length = 2.45 cm. Since the lefthand area is pure (only Iris
setosa), it cannot be split any further. However, the righthand area is impure, so the depth-1 right node
splits it at petal width =1.75 cm (represented by the dashed line). Since max_depth was set to 2, the
DecisionTree stops right there. If you set max_depth to 3, then the two depth-2 nodes would each add
another decision boundary (represented by the dotted lines).

— Degzrot trees aie waJwMMﬂwmwm&{_b
mehmmomm Wmmdwmbw
VO

A Decision Tree can also estimate the probability that an instance belongs to a particular class k. First it
traverses the tree to find the leaf node for this instance, and then it returns the ratio of training instances
of class k in this node. For example, suppose you have found a flower whose petals are 5 cm long and
1.5 cm wide. The corresponding leaf node is the depth-2 left node, so the Decision Tree should output
the following probabilities: 0% for Iris setosa (0/54), 90.7% for Iris versicolor (49/54), and 9.3% for Iris
virginica (5/54). And if you ask it to predict the class, it should output Iris versicolor (class 1) because it
has the highest probability.

£ -
CART Al orfirm ¢-
Scikit-Learn uses the Classification and Regression Tree (CART) algorithm to train Decision Trees (also
called “growing” trees). The algorithm works by first splitting thetraining set into two subsets using a
single feature k and a threshold tk(e.g., “petal length < 2.45 cm”). How does it choose k and tk ? It
searches for the pair (k, tk) that produces the purest subsets (weighted by their size) «

— ot Y fundson at akqav‘imm h‘at-h:: MBS 12e

(kb)) = MG . g

G
My o e o

-q%,aﬁw MULSUR L fwfu,ﬁl? of W/W At
* M L

°*m 2 {otal swlo se b

—®0Once the CART algorithm has successfully split the training set in two, it splits the subsets using the
same logic, then the sub-subsets, and so on, recursively. It stops recursing once it reaches the maximum
depth (defined by the max_depth hyperparameter), or if it cannot find a split that will reduce impurity.

= (ART 0O U am ¢ or ceas Urss e{—m/c»w

G o mscc?whud~

—BFFMM efh"mai e ¢ be om NP-WML’.FW:M
D mguites 0(e™) time.

s 0(2e9,m) time Complnivy for o
—b Woﬁgv We eom e M\"OPR, St tead 9& caw,ﬁ -ba Bt g

VOM&W@WO&WWW-

MTGf’E— (AaH)= — {’4 Prw 1’9‘{[3 (Pe)

P&Kio

ot for d,{fnz%mdboﬂabomm&

DH= -Ya)gy W9, Wajey - 8¢y Loqg(.QmJ

= 0ryuy
—p
So, should you use Gini impurity or entropy? The truth is, most of the time it does not make a big
difference: they lead to similar trees. Gini impurity is slightly faster to compute, so it is a good default.
However, when they differ, Gini impurity tends to isolate the most frequent class in its own branch of the
tree, while entropy tends to produce slightly more balanced trees.

—>To avoid overfitting the training data, you need to restrict the Decision Tree’s freedom during training. As
you know by now, this is called regularization. The regularization hyperparameters depend on the
algorithm used, but generally you can at least restrict the maximum depth of the Decision Tree. In Scikit-
Learn, this is controlled by the max_depth hyperparameter (the default value is None, which means
unlimited). Reducing max_depth will regularize the model and thus reduce the risk of overfitting -

-—
The DecisionTreeClassifier class has a few other parameters that similarly restrict the shape of the

Decision Tree: min_samples_split (the minimum number of samples a node must have before it can be
split), min_samples_leaf (the minimum number of samples a leaf node must have),
min_weight_fraction_leaf (same as min_samples_leaf but expressed as a fraction of the total number of
weighted instances), max_leaf_nodes (the maximum number of leaf nodes), and max_features (the
maximum number of features that are evaluated for splitting at each node). Increasing
min_*hyperparameters or reducing max_* hyperparameters will regularize the model.

—

Other algorithms work by first training the Decision Tree without restrictions, then pruning (deleting)
unnecessary nodes. A node whose children are all leaf nodes is considered unnecessary if the

purity improvement it provides is not statistically significant. Standard statistical tests, such as the x2
test (chi-squared test), are used to estimate the probability that the improvement is purely the result of
chance (which is called the null hypothesis). If this probability, called the p-value, is higher than a given
threshold (typically 5%, controlled by a hyperparameter), then the node is considered unnecessary and its
children are deleted. The pruning continues until all unnecessary nodes have been pruned.

—b Figure shows two Decision Trees trained on the moons dataset

- No restrictions min_samples_leaf = 4

1.04

051

XZ ®0
004{°*

=0.51

~15 -10 -05 00 05 10 15 20 -15 -10 -05 00 05 10 15 20
X1 X1

On the left the Decision Tree is trained with the default hyperparameters (i.e., no restrictions), and on the
right it's trained with min_samples_leaf=4. It is quite obvious that the model on the left is overfitting, and
the model on the right will probably generalize better.

from sklearn.datasets import load_iris

Trom sklearn.tree import DecisionTreeclassifier
iris=load_iris()

X=iris["data™][:.,:2]
=iris["target™]
dt=DecisionTreeClassifier(max_depth=2)
dt.Fit(x,y)
v=dt.predict([[5,1.2]1])
A fF y==©:
print(Tiris_setosa")
elif y=—1:
print(Tiris_versicolor®™)
else:
print(”iris_wvirginica"™)
00=

iris_yersicolor

x1<=0.197
mse = 0.098
samples = 200
value = 0.354

True False

x1<=0.092 x1 <=0.772
mse = 0.038 mse = 0.074
samples = 44 samples = 156
_value = 0.689 value = 0.259
mse =0.013 mse = 0.015 mse = 0.036
samples = 24 samples = 110 samples = 46
value = 0.552 value =0.111 value =0.615

—0 fh fae OO K Smia $0 dJaulhiuatien ee (et
L busle eadlit. M makn dlifftwerve & quwat laieed

% fupwd\i/ua aor Ot [x,wud a Vol -

—b
For example, suppose you want to make a prediction for a new instance with x1 = 0.6. You traverse
the tree starting at the root, and you eventually reach the leaf node that predicts value=0.111{This
prediction is the average target value of the 110 training instances associated with this leaf node, and it
results in a mean squared error equal to 0.015 over these 110 instances.

—P
This model’s predictions are represented on the left in Figure . If you set max_depth=3, you get the
predictions represented on the right. Notice how the predicted value for each region is always the
average target value of the instances in that region. The algorithm splits each region in a way that makes
most training instances as close as possible to that predicted value.

max_depth=2 max_depth=3
1a .l - T v T H = T
Pl =] - ' i !
0s{, %|. y Depttizl s A !
b, A9 Depth=0 1 o i
0.6 7! - .—.’-l— 1 :
b 7 Wi » Depth=2
y e £ P s n
04{ |°.4. X fh],9 -
1 - . I B 1 .
IDedth=1 2", * . .4 P '
g (L) 0 X
I . % .J' 1 *)
T & EP .-"-‘1. I i T |
i i i % i
—-0.2 1 = . I 1 ! \ . L,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X1 X1
e ! G, > (r a

pvvodle -

> The CART algorithm works mostly the same way as earlier, except that instead of trying to split the
training set in a way that minimizes impurity, it now tries to split the training set in a way that minimizes
the MSE. Equation shows the cost function that the algorithm tries to minimize.

m ma.,.",amg;
'J(,Katk-) = Wt MSE. + MSEMaM!:
m % 8¢’

MEE oy = L\iwm “dm)
ublfla
T
7m&, veUDAL
Mode

—® Jwt Wke {of daut{iatlen sk, Dedudon Tus are

F,q,e-m.z., to ela-ﬂ-fnbtﬂ/«a, when d-ﬂ.a‘L&na, kv ;u_?xu.hew

boak2 o

—2 W ienkt cw.a_ M_:aada.xza.ﬁ,em L whw?, oud_auu WP
a:macu) afsv%nk e F,u.duben on %
'?uu. j’h.e., PA it oxe v Mb&, wm"’
e Tmmfu-? v’ua, wnd Je _gd;hv\} mon _ ;a,w.f,m Leef =10

JUI VS 4 qul, a v Suosonalole vmd.b(;,gmaw1w

W%W{‘@W

No restrictio

: o o . i
v toud g,;a“gm;wﬁ% U—au-‘-"‘-’“zcd a_ Deusaon
AEITH /U.a&wfrf

-—-Qmwmfm aue withe Declslon Ten ©n ¥hatk waa_a.u_\/u?
tie o vl JORNA akrevu l?w e ‘b'ww;ﬁo
doua_.

= Iwafm—-éi*

Ensamile ILU-‘A/\AE‘I\& ond Ramnden Forw?

S Suppose you pose a complex question to thousands of random people, then aggregate their answers. In
many cases you will find that this aggregated answer is better than an expert's answer. This is called the
wisdom of the crowd. Similarly, if you aggregate the predictions of a group of predictors (such as
classifiers or regressors), you will often get better predictions than with the best individual predictor. A
group of predictors is called an ensemble; thus, this technique is called Ensemble Learning, and an
Ensemble Learning algorithm is called an Ensemble method.

—D As an example of an Ensemble method, you can train a group of Decision Tree classifiers, each on a
different random subset of the training set. To make predictions, you obtain the predictions of all the
individual trees, then predict the class that gets the most votes (see the last exercise in Chapter 6). Such
an ensemble of Decision Trees is called a Random Forest, and despite its simplicity, this is one of the
most powerful Machine Learning algorithms available today.

Dsuppe U have TmBad agE amsifing cau O

Random
orest Classifier

o8

ogistic
ression
i% Diverse
predictors

P o Fivpl ey da ctrolt T EotEs ANOLIBftes
& to W%anm%wdaéefﬁuw
S e doug Har 3"“ e (est Jeoter - Tha
myaﬁ?—uw largifies & colld @ hosd 1/8410"‘3-
m&fa-

Ensemble’s prediction A .
(e.g., majority vote) [‘Aﬂ-!.d \f@#ﬁlﬁ. MT {.—'aj

~
Predictions
Diverse
predictors

New instance

b houg M“% Choser fee

P Sometime i ue’ﬁmada.wi‘fice i O (m%xm arewaty o
He bt wamsiflo %) e engennbles

= Ensemble methods work best when the predictors are as independent from one another as possible. One
way to get diverse classifiers is to train them using very different algorithms. This increases the
chance that they will make very different types of errors, improving the ensemble’s accuracy,

<> Hard Voting
. Each classifier in the ensemble makes a prediction (class label), and the final prediction is
determined by majority voting.
. The class that receives the most votes from the classifiers is chosen as the final output.

—8 Soft Voting

. Each classifier provides a probability estimate for each class (using methods like
predict_proba()).

. The final prediction is made by averaging these probabilities and selecting the class with the
highest average probability.

—p ode
ﬁk!earn ensemble import RandomForestClassifier,VotingClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons

Generate the dataset
X, y = make_moons(n_samples=10000, noise=0.1, random_state=42)

x_train,x_testy_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
r_f=RandomForestClassifier()

svc=SVC(probability=True)

Igl=LogisticRegression()

Voting_clf=VotingClassifier(estimators=[("random” r_f),("svc",svc),("lgl" Igl)],voting="soft")

Voting_clf.fit(x_train,y_train)

> %M ﬁwﬁ%m?‘gr- smmﬁﬂf"‘g‘*aa(&o {-o-re,wu}
Pﬂubﬂwaw.d txabrv thum om dfﬁmm Aomdlewm Rubseds
% +ne -l“X.aEMB-ﬁﬁ, ctke Wl sowmplieg f:aqcowmd w ik
/u.f)laww it mmetinod & collad tggé;?f_u?-wm éwvmﬂﬁ?

WM wytheut .u.t)laanw * & colld gm"._,%-

—& both bagging and pasting allow training instances to be sampled several times across multiple
predictors, but only bagging allows training instances to be sampled several times for the same predictor.
This sampling and training process is represented in Figure

-%} % % Predictors
(e.g., classifiers)
'}

A
Training

\/

Random sampling
(with replacement = bootstrap)

/ “'3:05& / Training set
O O

—P o oM Fﬂdﬁdﬂu ore Holbned ,the emuombls con
Wwolke @ Fﬂﬂlﬁcﬁ% {rof O had L%WM o&, ﬂ“w?ba_
Waaﬁ‘w fonbion i %’om‘w% Hu gAostiticad napde
(mest frequent preddition, ¥ Like a hand \/94:‘914?,

housifies) qor Al atSon 0F qu,w?z o WW

—

from sklearn.ensemble import BaggingClassifier Y

from sklearn.tree import DecisionTreeClassifier e Q”d are a' :fc
—P Bate e - QMR

bag_clf=BaggingClassifier(DecisionTreeClas |f|ml
n_estimators=100,max_samples=1000,

bootstrap |n‘en jobs=-1) i Y1 61 ‘{"UW«WBU-?C-Q/‘M'P(@ %AIW/“JTD S-»ﬂ.a&

w0 §f btk aAq0 ool i

“© e Baggling Wil amdomats WWVW@

atlvate o prevasidinis T4 & ha fx,ea,cd_pmbqw maetiod]

—% Below 3"’““%‘) cawApate Q?V\a& dutisnon e bgw,daﬂad. wr P
pT bmdmﬂ Q«L o ma%%ﬂmmbm o 500 reess

boim molwd en <oy mdu doteeet . e emucndote

Predichorne wil Uky. Geusalize mwd beths duam
S Peticiov Taees cd Lubovs -
wa'{b 'siunTreeP‘r

Deci Decision Trees with Bagging

15

1.0 1

0.5 1
X2

0.0 1

-=0.5 4

... ' ™

[]
-1.0 . : — af" 7 8 .
-15 -1.0 -05 00 05 10 15 20

v - ~ 30

Woy a4 wax _gampls amd bsekiarp, but for {wtue

PWM%WMW@W Subsels of fue

— Hs Wczu,e X Pahu&oﬁ& UULZ(‘L'«/{ W gov arc
Mu.? Lo W—dﬁn«wuno&/aﬂ L%MSCQM&W
Emanel).

'—?ganmf:uﬂ/«abﬁ% frviinda Gutomee. and| @b & ol

Pty mtuod -

2 k'-f—fw.a oA ’csw,wwz dutom Lb _u_;ﬁ’u? bodﬁ‘tza‘) F:!Uu amd

C-GMAf(u. 0] but sa/wdmﬁ,e, tQﬂ.&LULM 5 fa\: MMP feat
T#e. amd owdjm' M~ featne 0 o Value swallee
wam w0 YU cllid Hue Rwdowy Subcpone Hutteod.

—® Rvdow FRate 0~ (ReA)

e RKFA v lawdde Jdodas MM@MA(?_ coutiipnoure Voase
aL v Cose a{ m_axwh’m omd cokeqovi @l Vs 04 Savi
Cote %L Joustfah'on |

Bagging Boosting

HosPioa voTKE oy tne @_'ﬁy\. D_'\

g g @CE-R— @ R

‘r

o R

Parallel Sequential

=F t(,g@ b@%’c’%ﬁ b(JO'ﬂQJ~

1=
2

o

Selection of Subset: Bagéing starts by choosing a random sample, or subset, from the entire dataset.
Bootstrap Sampling: Each model is then created from these samples, called Bootstrap Samples,
which are taken from the original data with replacement. This process is known as row sampling.
Bootstrapping: The step of row sampling with replacement is referred to as bootstrapping.
Independent Model Training: Each model is trained independently on its corresponding Bootstrap
Sample. This training process generates results for each model.

Majority Voting: The final output is determined by combining the results of all models through
majority voting. The most commonly predicted outcome among the models is selected.

Aggregation: This step, which involves combining all the results and generating the final output
based on majority voting, is known as aggregation.

Original Data

|
OO0 Bootstrapping
99090
Classifier mega.t'ng
Ensemble classifier Bagging

—B Now let's look at an example by breaking it down with the help of the following figure. Here the bootstrap
sample is taken from actual data (Bootstrap sample 01, Bootstrap sample 02, and Bootstrap sample 03)
with a replacement which means there is a high possibility that each sample won't contain unique data.
The model (Model 01, Model 02, and Model 03) obtained from this bootstrap sample is trained
independently. Each model generates results as shown. Now the Happy emoji has a majority when
compared to the Sad emoji. Thus based on majority voting final output is obtained as Happy emoji.

Bagging Ensemble Method

LR Majority Voting

Build Parallel

Steps Involved in Random Forest Algorithm
. Step 1: In this model, a subset of data points and a subset of features is selected for
constructing each decision tree. Simply put, n random records and m features are taken from the

data set having k number of records.

. Step 2: Individual decision trees are constructed for each sample.

. Step 3: Each decision tree will generate an output.

= Step 4. Final output is considered based on Majority Voting or Averaging for Classification and
regression, respectively.

"’_S’Mm’-t-ml-__feaiuu e'{, W Fosagh -

‘N\/&t&eﬂ:_ eaun duetvon Tree P me Raudew '{'Mtﬁ
bullE from a dﬁfazaw subcet o dater
odl fewu-mftdﬁ/m:ﬂrz (/uJ.(ax - sedun S
Wut‘%"ma, Burs) Emﬁpm&% e wodd gowsal?
= r_o.fablwa
* by o Moy i 2 cm bkl Ll
LULMMLLGD(, bartowv?.@ S'LL%D&GLM
gPuf,qs m’bg muuaﬁ,w.g, Aegults
fom ethus trece Hnat clo et
howre mf,g_qi,’u_? Valiirs fo'ff‘kn_gync,
doin Psfuh«

owﬂ%—eog, oo Lhvatlove 'L RE Wﬁm o Foteamad
Wﬁmfﬂwwﬁu%mmm exov7
withent fue (e for oo szimme Volaton
ce ke

~— Swllac o Mmmﬁmax&p we haue ex\ea $2ee

Sassificn e ha m"»-? K Leasan e A .) M made
dbfpoome lw RFand ewba e & tnaky n exhn 2o
we seb Hae Ravden, HWiaualietd ggrmuwmfwm
ot Man 2208 A {wmb@t&:gwﬁm Hitedro\dg

(Aixe reguiar Deciion Tre oo

—PK%MVUJE,W@%M‘ aﬁwmumﬂmm&%gdtww
-fewl.-um WLL‘%M&J-{-& n roaz,h‘wlm‘if‘azgum#o

9%09»;4-&@ ¢ . QM?JLVLQJ/JI Sallod {/\mﬂomw beagfhw?_ H_%M'I'D
aenidple. wetiind Hak can cenuotiue

setsdl, weak RQosuss w0 A Loy Laajues. Hae
Pdm, msasﬁ"b%ﬂ'l meiodt st {=aBu prudiiore

%%M w B Boosti
% agging oosting
fo ww.ct’ dzs {lq_o_d i "ﬁ%’\ W

BB w0
a9

Parallel Sequential

2 pdaBopet |-

- One way for a new predictor to correct its predecessor is to pay a bit more attention to the training
instances that the predecessor underfitted. This results in new predictors focusing more and more on the
hard cases. This is the technique used by AdaBoost.

~® For example, when training an AdaBoost classifier, the algorithm first trains a base classifier (such as a
Decision Tree) and uses it to make predictions on the training set. The algorithm then increases the
relative weight of misclassified training instances.Then it trains a second classifier, using the updated
weights, and again makes predictions on the training set, updates the instance weights, and so on see
Figure

" it clasiifio %M /u (=] [Fe]

g bootia- T__J %% :d

i
k. 5. it ik o W@ 9/@//@//1:,/

thut, utomcees, and o om

Nee*-

—ee

—> There is one important drawback to this sequential learning technique: it cannot be parallelized (or only
partially), since each predictor can only be trained after the previous predictor has been trained and
evaluated. As a result, it does not scale as well as bagging or pasting.

P Uk take a alewr leok on the Adabestr alqoritima.
ca wdamee WLS WLUMM 24 to ;/M.Af,m-
Fﬁ.zdio&ua U '{Ta.fmalywwdt?*;s Mab\ks{ LINOT ARedt 32, Y

wi
L4504 1]

A=

(=1

AN
i w
)

‘—Pmﬁ’-ewd&wt %mﬁ“" Frovonio enample
~b 703-3fxmum9w sl WISV g e e
data f&i’ut

——9\1;9&m s fobd for B ke pomd

_glGLU:F\/LC)J—a&m d bodor W%W}c
o A % P quuew \7"")(,4 ekt et

UUpSE O~

the ‘ot qu- x:(‘ e WM b@» owﬁva- wd?,w
4ol Ukdng wwo w&?upmamm v - WMo, wore acessake
(% dor &, e W ke Vu.u_?//d' wudd] be- 3
737 Jurt ?mwm\% rovdewly, Wen itk wu,gwt‘ Wil ke

Laadm Wz oolabesrt algerfihm ufatam WMe Ot Ieigts,
UAL below 2quotlon wiide beette Yhe »uaja,qk St e
%4&5 {{-rfal LY

: o i »
wh g R

; N A .
W e J \d;].zl)% Zf;p

for = L3

Lf’\‘w«tau e m(/t/.u?«a' b Ose MDWW‘&&J&W
9 80 4 lij
clfwt £ W
(FI
L"Fm"mu? X WD PALALAIOT (g trofuof wnva, e ufdﬂ*ﬂd
wcftﬁahks;amsdm whole process & ;u,f,za,kal e nud pacddcdos
Weigaat) conputed , amd tee Sutarses wadqh” ase ppdate,
wrops Whtn Ve dugind nonbar OJ- rmdjdmﬁs A SReaclud g
o7 . why @ fx«f&d PReductor &fwnd-

B To make predictions, AdaBoost simply computes the predictions of all the predictors and weighs them
using the predictor weights aj. The predicted class is the one that receives the majority of weighted votes

N ; no 185
Gire o £ 1] et i
K N0 = K

Neodee o~

-

Scikit-Learn uses a multiclass version of AdaBoost called SAMME (which stands for Stagewise Additive
Modeling using a Multiclass Exponential loss function). When there are just two classes, SAMME is
equivalent to AdaBoost. If the predictors can estimate class probabilities (i.e., if they have a
predict_proba() method), Scikit-Learn can use a variant of SAMME called SAMME.R (the R stands for
“Real”), which relies on class probabilities rather than predictions and generally performs better.

semble import AdaBoostClassifier
‘ee import DecisionTreeClassifier

9%‘3%1@5:%
Q l : Eem l ; n Ea ada_model=AdaBoostClassifier(

DecisionTreeClassifier(max_depth=2),
n_estimators=2ee,

WV‘.&, ﬁ)::'-"r"l; v Tm algorithm="SAMME.R",
Lot

learning_rate=0.5

. &)
f’ ada_model.fit(x_train,y_train)
v 1.6s

\ I\NLib\sitespaciks

A2 d\anacond:
warnings.warn(’
-

P o AdaBoostClassifier

» estimator: DecisionTreeClassifiari

SN ggada“pmt _&99140%«%‘3-—'

@ Another very popular boosting algorithm is Gradient Boosting. Just like AdaBoost, Gradient Boosting
works by sequentially adding predictors to an ensemble, each one correcting its predecessor. However,
instead of tweaking the instance weights at every iteration like AdaBoost does, this method tries to fit the
new predictor to the residual network errors made by the previous predictor.

e Let's go through a simple regression example, using Decision Trees as the base predictors (of course,
Gradient Boosting also works great with regression tasks). This is called Gradient Tree Boosting, or

Gradient Boosted Regression Trees (GBRT). First, let’s fit a DecisionTreeRegressor to the training set (for
example, a noisy quadratic training set):

from sklearn.tree import DecisionTreeRegressor

tree_reg1 = DecisionTreeRegressor(max_depth=2)

tree_reg1.fit(X, y)
Next, we'll train a second DecisionTreeRegressor on the residual errors made by the
first predictor:

y2 =y - tree_reg1.predict(X)

tree_reg2 = DecisionTreeRegressor(max_depth=2)

tree_reg2.fit(X, y2)

Then we train a third regressor on the residual errors made by the second predictor:
y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)

Now we have an ensemble containing three trees. It can make predictions on a new

instance simply by adding up the predictions of all the trees:
y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

—BMM-[-ﬂam.e, WMW Fa,cau'ch'@w & thue Houe hmf’nbd/r

o8 Residuals and tree predictions o8 Ensemble predictions
’ o - ’ * - - -
% - Training set . - - Training set .
064 -4- — hi(x1) »" 061 .4- — h(x1) = hi(x1) »
_— - . -
y ..: - ‘. y -': - d-.
0.4 - L - 0.4 4 Pl _
- -
- S - 2
0.2 . .o . s 4 0.2 4 * .) .. 4
- - > =
- - - - - -
— -a..'- :. - . .:.... 0.0 -6, .f. :. - ‘- .-'..
- 3 - = : - .'. 24 s
—0.4 —0.2 0.0 0.2 0.4 —-0.4 —0.2 0.0 0.2 0.4
0.8
- - -
0.4 - - Residuals - —— h(x1) = hi(x1) + h2(x1) .
+ h2(x1) 064 _4° 2°
0.2 +1‘++ 4 + —iy
= e * |y oo
-.5 '-"_b_ + b oy g + 0.4 3 - -
— .p : . Lrs
= 0.0 o s * ++# -t)
1 -.-t W+ e X -+ .:' -
+ 4+ + * 4 + - .
5—0.2- S :-i- 0.2 1 -] - -
-.. - I
- - - - -
e - I
DA 0.0 - TEe = 8, 8"
(o] - 3% 2
—0.4 —0.2 0.0 0.2 0.4 —0.4 —0.2 0.0 0.2 0.4
0.8
0.4 — hs(x1) ¥ h(x1) = h1(x1) + h2(x1) + h3a(x;)
= 061 4- -
~ 0.2 =
-~ - i I ‘E::: + - y -) -
‘L‘ + o+ b & % . - e e 0.4 1 - N L
—~ 0.0 "L'_‘*:—t'l++ TS RO, W e b i e
Rat +F & o+ 4+ + ¥ T3 s
— . 4 + -
= —0.2 4 0.2 4
I +
>,
—0.4 1 0.0 A
-0.4 -0.2 0.0 0.2 0.4 -0.4 0.4
X1

L’In this depiction of Gradient Boosting, the first predictor (top left) is trained normally, then each
consecutive predictor (middle left and lower left) is trained on the previous predictor’s residuals; the right
column shows the resulting ensemble’s predictions «

® In the first row, the ensemble has just one tree, so its predictions are exactly the same as the first tree’s
predictions. In the second row, a new tree is trained on the residual errors of the first tree. On the right

you can see that the ensemble’s predictions are equal to the sum of the predictions of the first
two trees. Similarly, in the third row another tree is trained on the residual errors of the second tree. You
can see that the ensemble’s predictions gradually get better as trees are added to the ensemble.

A simpler way to train GBRT ensembles is to use Scikit-Learn’s GradientBoostingRegressor class. Much
like the RandomForestRegressor class, it has hyperparameters to control the growth of Decision Trees

(e.g., max_depth, min_samples_leaf), as well as hyperparameters to control the ensemble training, such
as the number of trees (n_estimators).

The learning_rate hyperparameter scales the contribution of each tree. If you set it to a low value, such as

0.1, you will need more trees in the ensemble to fit the training set, but the predictions will usually
generalize better. This is a regularization technique called shrinkage.

learning_rate=1.0, n_estimators=3

08 learning_rate=0.1, n_estimators=200
—— Ensemble predictions
061 .,
Y
0.4
0.2 4
0.0
-04 -0 0.0 0.2 0.4 -04 -02 0.0 0.2 0.4
X1 X1

Lo

Figure shows two GBRT ensembles trained with a low learning rate: the one on the left does not have

enough trees to fit the training set, while the one on the right has too many trees and overfits the training
set.

o

In order to find the optimal number of trees, you can use early stopping. A simple way to implement this
is to use the staged_predict() method: it returns an iterator over the predictions made by the ensemble at
each stage of training (with one tree, two trees, etc.). The following code trains a GBRT ensemble with120
trees, then measures the validation error at each stage of training to find the opti-

mal number of trees, and finally trains another GBRT ensemble using the optimal number of trees:

=B import numpy as np

— from sklearn.model_selection import train_test_split

—> from sklearn.metrics import mean_squared_error

~—» X_train, X_val, y_train, y_val = train_test_split(X, y)

—> gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120)
—>gbrt.fit(X_train, y_train)

—> errors = [mean_squared_error(y_val, y_pred) for y_pred in gbrt.staged_predict(X_val)]
—» bst_n_estimators = np.argmin(errors) + 1

—2 gbrt_best = GradientBoostingRegressor(max_depth=2,n_estimators=bst_n_estimators)
—» gbrt_best.fit(X_train, y_train)

The validation errors are represented on the left of Figure, and the best model’s predictions are
represented on the right.

Validation error Best model (56 trees)
0.010 j
0.008 |
. 0.006 -
o
=
(1N}
0.004
Minimum
""""" T
0.002 !
!
0.000 r T — . T r T T - T
0 20 40 60 80 100 120 -0.4 -0.2 0.0 0.2 0.4
Number of trees X1

= " ot -
N _____IG“"P*’“‘@

'Instead of using trivial functions (such as hard voting) to aggregate the predictions of all predictors in an
ensemble, why don't we train a model to perform this aggregation? Figure shows such an ensemble
performing a regression task on a new instance. Each of the bottom three predictors predicts a different
value (3.1, 2.7, and 2.9), and then the final predictor (called a blender, or a meta learner) takes these
predictions as inputs and makes the.final prediction (3.0).

@ Blending O ﬂﬁlﬂj@fm? Pﬂm’c/bem y,unwb

New instance

—&
To train the blender, a common approach is to use a hold-out set. 19 Let's see how it works. First, the
training set is split into two subsets. The first subset is used to train the predictors in the first layer (see
Figure 1).

—PNext, the first layer’s predictors are used to make predictions on the second (heldout) set (see Figure 2).

This ensures that the predictions are “clean,” since the predictors never saw these instances during
training. For each instance in the hold-out set, there are three predicted values. We can create a new
training set using these predicted values as input features (which makes this new training set 3D), and
keeping the target values. The blender is trained on this new training set, so it learns to predict the target
value, given the first layer’s predictions.

o8 o
Train Tr;r\/

Subset 1 Subset 2
Subset 1

Split

Subset 2

Split

Trainingset/|°:'."-:._3"' / Training set/""." /

G figuse 2 o Hoquse 2

—Plt is actually possible to train several different blenders this way (e.g., one using Linear Regression,
another using Random Forest Regression), to get a whole layer of blenders. The trick is to split the
training set into three subsets: the first one is used to train the first layer, the second one is used to
create the training set used to train the second layer (using predictions made by the predictors of the first
layer), and the third one is used to create the training set to train the third layer (using predictions
made by the predictors of the second layer). Once this is done, we can make a prediction for a new
instance by going through each layer sequentially, as shown in Figure

Layer 3 3{}

New instance

% tee— € D?mmﬁ@%al% RedwctSorv e

—pPMany Machine Learning problems involve thousands or even millions of features for each training

_9

instance. Not only do all these features make training extremely slow, but they can also make it much
harder to find a good solution, as we will see. This problem is often referred to as the curse of
dimensionality.

Fortunately, in real-world problems, it is often possible to reduce the number of features considerably,
turning an intractable problem into a tractable one. For example, consider the MNIST images, the pixels
on the image borders are almost always white, so you could completely drop these pixels from the
training set without losing much information. Additionally, two neighboring pixels are often highly
correlated: if you merge them into a single pixel (e.g., by taking the mean of the two pixel intensities), you
will not lose much information.

Reducing dimensionality does cause some information loss (just like compressing an image to JPEG can
degrade its quality), so even though it will speed up training, it may make your system perform slightly
worse. It also makes your pipelines a bit more complex and thus harder to maintain. So, if training is too
slow, you should first try to train your system with the original data before considering using
dimensionality reduction. In some cases, reducing the dimensionality of the training data may filter out
some noise and unnecessary details and thus result in higher performance, but in general it won't; it will
just speed up training

~BApart from speeding up training, dimensionality reduction is also extremely useful for data visualization

(or DataViz). Reducing the number of dimensions down to two (or three) makes it possible to plot a
condensed view of a high-dimensional training set on a graph and often gain some important insights by
visually detecting patterns,such as clusters.

&%% D‘me/r?MJﬁi"a/g..

2 W aie SO Wred Jc'ou:\h?u% tw thate Aveuelone - HHoU

ow Gohlgen faldy W W we by o Hmegle g -
dariaaus on e Afac.a.'- venr o, boasle 4b Ww A
oty Vel 4o piks Ga o e

‘_B"Fra»tm :uf)-u.sew!—

X
e |o—o ‘_' ; Pg’?*‘-fi W’ QQ‘M%J
— ID N wdets omd AL
S| (omre up hypenbey).
0 1 2 3 4 #Dim

™ e more dSnansiens, m«m‘f’ﬁuﬁmm, e gLt e

A L 9&, guu{-;ttﬁ,ﬂ ot .

-—am'i—w_nw%, oL, gelubon o Y wisse %Weuvyuﬁha,
cowd e D Cwrsgse the 2o e v, sek
o Gt QA WWMM? o&mmyﬂem.

-&
Unfortunately, in practice, the number of training instances required to reach a given density grows
exponentially with the number of dimensions. With just 100 features (significantly fewer than in the
MNIST problem), you would need more training instances than atoms in the observable universe in order
for training instances to be within 0.1 of each other on average, assuming they were spread out uniformly

across all dimensions.

ﬂmm_m for MGWLWA’EQVLQ:L&H Redotilon <~
LP Tw2 main af proacbue o .udzuifmq, bimermePonalis
Proq ectven @ Manifod u:ac.aw%a,

@ P%DTW‘LOW g —

-
In most real-world problems, training instances are not spread out uniformly across all dimensions. Many

features are almost constant, while others are highly correlated. As a result, all training instances lie
within (or close to) a much lower-dimensional subspace of the high-dimensional space.

b frouse 1 (BD)

b Dateses 1.01

i
" ¢ ‘
— |dow) wet ol | 2
L\/‘(&;FYD’[o U 1005 r a ‘ #
e but G.ffroowf/u o dxwwg-eva.lu"h—l, 0.0 g I ' ;’

+
MUUJU-QTI -LI/U Ha/u‘a res e Wm —~0.5 - s **f."r "’*:'0’ i

@{—V:é::&iol;? &aﬂufwar e Swox gl U O Honup e ez(wi"—

—P 2D manifold is a 2D shape that can be bent and twisted in a higher-dimensional space. More generally, a
d-dimensional manifold is a part of an n-dimensional space (where d < n) that locally resembles a d-

dimensional hyperplane. In the case of the Swiss roll, d = 2 and n = 3: it locally resembles a 2D plane, but
it is rolled in the third dimension.

= 4 Many dimensionality reduction algorithms work by modeling the manifold on which the training instances
lie; this is called Manifold Learning. It relies on the manifold assumption, also called the manifold
hypothesis, which holds that most real-world high-dimensional datasets lie close to a much lower-
dimensional manifold. This assumption is very often empirically observed.

T Sesal olgo. haus beuw dutepel wds $ne wandfou
Mwﬁ? fRumewa eadn w K wGue caﬁ?focwbu to

Umcveuisg- e W%‘Lﬂ, womlold ptpuskuze -
O Ssomubte, featoe Mappiy (Fomap)
@ oy ASumm embesdBg (L4 ED
© laplacinn Eigonmops

@) 1 - DarsSowrd Stochartc S

—& PeA [pabntpal comporent Avalysi (PeM] - & g,? fos vne
MRt populas m&ms«"m*n-&, Asduckion axolan"mm. Fagt it
vclondi fies the. hﬁfakmmzﬁs dpeeet 4o e dates and
W Pw-]ah e datas el .

® W T 4T fﬂ@mz,-}"‘b
POA K tmat Uie wluse

-5
Before you can project the training set onto a lower-dimensional hyperplane, you first need to choose the

right hyperplane. For example, a simple 2D dataset is represented on the left in Figure, along with three
different axes (i.e., 1D hyperplanes). On the right is the result of the projection of the dataset onto each of
these axes. As you can see, the projection onto the solid line preserves the maximum variance, while the
projection onto the dotted line preserves very little variance and the projection onto the dashed line
preserves an intermediate amount of variance.

[->bet

> Mud S

& o

—>
It seems reasonable to select the axis that preserves the maximum amount of variance, as it will most

likely lose less information than the other projections. Another way to justify this choice is that it is the
axis that minimizes the mean squared distance between the original dataset and its projection onto that
axis. This is the rather simple idea behind PCA.

PW (HW-PQMM °-

PCA identifies the axis that accounts for the largest amount of variance in the training set. In above
Figure, it is the solid line. It also finds a second axis, orthogonal to the first one, that accounts for the
largest amount of remaining variance. In this 2D example there is no choice: it is the dotted line. If it were
a higher-dimensional dataset, PCA would also find a third axis, orthogonal to both previous axes, and a
fourth, a fifth, and so on—as many axes as the number of dimensions in the dataset.

Wi ™M aws G g oM™ P«f»u"fpa! DWA(JM (_POJGJW.«;,
Doka: I abowe fdaw, e fe PG U e axi e wlide
Vot ¢ Mu, omd e SBwovd P60 & pe axdt en whidw
Vedot €3 Mue:

—BTo (tud Y prindpal wwponents ed»a,'l'm,&nf e, Hume &
a sadad mavie faxtoafe.aﬁm Yecnique 91"%
Vouue wgﬁ'ﬁgm (svp). &VP D¢z WU +rRA 0BG ses
mabla % g e Matix wuujfi’f)u.coiigw 9& ke yadiees
UV, whze V' coutabu due undt Vider vhat daftue o

We FMP"J conporenit Huak us @ we%ﬂ%{m,

Ly €y €f -7i=dy
»

||

The following Python code uses NumPy’s svd() function to obtain all the principal components of the
training set, then extracts the two unit vectors that define the first two PCs:

- X_centered = X - X.mean(axis=0)
—» U, s, Vt = np.linalg.svd(X_centered)
~>»CT =VL.T[;, 0]

- €2 =Vt.T[;, 1]

Net ¢-
PCA assumes that the dataset is centered around the origin. As we will see, Scikit-Learn’s PCA classes
take care of centering the data for you. If you implement PCA yourself (as in the preceding example), or if
you use other libraries, don't forget to center the data first.

~® once you have identified all the principal components, you can reduce the dimensionality of the dataset
down to d dimensions by projecting it onto the hyperplane defined by the first d principal components.
Selecting this hyperplane ensures that the projection will preserve as much variance as possible.

*Toprozwmt°°wwmw%w%uﬁw
o reduced okt RKg-po Oddfwwmoﬂalﬂz. oy e fus
Wmavmlhof)ufcatﬁ%g&%tmw?.w L{ajﬁxxbam
matn'y wd,d;zr.m 08 Hue wWabnx ceuxa&% e fiswt d, cobomn

Y
ga)(‘4_,?797;- ’fuf!yad W {
Xd-— L= X Wy lbmesion d
i wq f,w ‘A cﬁ'VJmm%ma.m'x

V.
—>

The following Python code projects the training set onto the plane defined by the first two principal
components:

-—» W2 =VL.T[;, :2]

— X2D = X_centered.dot(W2)]—1) ot E’mdﬂd" ’

- Tn Skl Bde wildl (wok Loie

—o from sklearn.decomposition import PCA W_.,(_BW-PM ‘- dijWAMAMOw ak
-—» pca=PCA(n_components = 2) T !

—8 X2D = pca.fit_transform(X) whdr e wamkt o olisce -

—5
Another useful piece of information is the explained variance ratio of each principal component, available

via the explained_variance_ratio_ variable. The ratio indicates the proportion of the dataset’s variance
that lies along each principal component. For example, let's look at the explained variance ratios of the
first two components of the 3D dataset represented in

== pea - ezaf)laﬁm{#\faﬁm _ xatle__

(b output
awaal(fo'fwzﬂ g 603 01463182

LbWﬁwJ:fu,e--fdﬂz Yo tLak gy » O&M dajeset's Voo, Aher
e Hat P6 amd LUb % Lie e Sewovd Po.
we o s ot 127 oy Me vudd £C, sp i+ &
Qemovable 0 pugume b tve tdld PG wabba

Carsiy LS %waﬁw

—Pinstead of arbitrarily choosing the number of dimensions to reduce down to, it is simpler to choose the
number of dimensions that add up to a sufficiently large portion of the variance (e.g., 95%). Unless, of
course, you are reducing dimensionality for data visualization—in that case you will want to reduce the
dimensionality down to 2or 3.

The following code performs PCA without reducing dimensionality, then computes
the minimum number of dimensions required to preserve 95% of the training set’s
variance:

<3 pca = POA()
_s pa- fit(%-tadn)
— Wium = np. womsum [ch. @Ptafymg{ _ Vlonnee _ 3ako-)
— d= np. Cuﬂmx(wmvm>=0'°l5_)+'l
!’»d@"' oud o <ok mfwwfgmw=d amd Aun pLA

f,ﬁﬂ)‘,ﬂ_o
=P there is a much better option: instead of specifying the number of principal components you want to pre-
serve, you can set n_components to be a float between 0.0 and 1.0, indicating the ratio of variance you
wish to preserve:

—» pca = PCA(n_components=0.95)
—p X_reduced = pca.fit_transform(X_train)

—pYet another option is to plot the explained variance as a function of the number of dimensions (simply
plot cumsum; see Figure). There will usually be an elbow in the curve, where the explained variance
stops growing fast. In this case, you can see that reducing the dimensionality down to about 100

dimensions wouldn’t lose too much explained variance. O = s S up
1-0 wm Lu..

v 0.8 L3 E > QJPW \/WCJI GAs a

E Elbow

5 061 fonti o e& e Uwveeq 91

©

£ o4 st enu-

2

W .2
0.0

50 100 150 200 250 300 350 400
Dimensions

o

—& PCA fii’: WWW%

After dimensionality reduction, the training set takes up much less space. As an example, try applying
PCA to the MNIST dataset while preserving 95% of its variance. You should find that each instance will
have just over 150 features, instead of the original 784 features. So, while most of the variance is
preserved, the dataset is now less than 20% of its original size! This is a reasonable compression ratio,
and you can see how this size reduction can speed up a classification algorithm (such as an SVM
classifier) tremendously,

2 U oiwpw"mw otmmpmm Sedusced, dasq et boke
i OTTMWM ba F\M +e W}m ‘W"’Oﬂ"ﬂﬂﬁe’b@

9&/ pea ja,h'eﬂ' it won't giue v o badg e 07{%4.?01
dota Qm F‘TD Lbhb'm Og? oo bt Qa, WQ’V! bwt of wlld

xm%b4¢m»hﬂwcﬁﬁm

—5 e, wuom éﬁuamﬂ dutomee belweeer he Ou‘iafml oAgAec

@A aecovetiucked dotn (oniprssed amd Vhron WTM}&
cold Aeoveluion e

_e
The following code compresses the MNIST dataset down to 154 dimensions, then uses the
inverse_transform() method to decompress it back to 784 dimensions:
— pca = PCA(n_components =154)
—p X_reduced = pca.fit_transform(X_train)
-» X_recovered = pca.inverse_transform(X_reduced)

—p Figure shows a few digits from the original training set (on the left), and the corresponding digits after
compression and decompression. You can see that there is a slight image quality loss, but the digits are

still mostly intact.
Original Compressed

LRV
\NU(]Q.)

L 3
5
A
3

— If you set the svd_solver hyperparameter to "randomized’, Scikit-Learn uses a stochastic algorithm called
Randomized PCA that quickly finds an approximation of the first d principal components. Its

computational complexity is. O (Mxa*) + O(g, 3) instead of. Amxn™) +0O(n3)for the full SVD
approach, so it is dramatically faster than full SVD when d is much smaller than n:

~—» rnd_pca = PCA(n_components=154, svd_solver="randomized")
— X_reduced = rnd_pca.fit_transform(X_train)

By default, svd_solver is actually set to "auto”: Scikit-Learn automatically uses the randomized PCA
algorithm if m or n is greater than 500 and d is less than 80% of m or n, or else it uses the full SVD
approach. If you want to force Scikit-Learn to use full SVD, you can set the svd_solver hyperparameter to
"full".

— One problem with the preceding implementations of PCA is that they require the whole training set to fit
in memory in order for the algorithm to run. Fortunately, Incremental PCA (IPCA) algorithms have been
developed. They allow you to split the training set into mini-batches and feed an IPCA algorithm one mini-
batch at a time.This is useful for large training sets and for applying PCA online (i.e., on the fly, as
new instances arrive)

— komel PLA 2-

the kernel trick, a mathematical technique that implicitly maps instances into a very high-dimensional
space (called the feature space), enabling nonlinear classification and regression with Support Vector
Machines. Recall that a linear decision boundary in the high-dimensional feature space corresponds to a
complex nonlinear decision boundary in the original space. It turns out that the same trick can be applied

to PCA, making it possible to perform complex nonlinear projections for dimensionality reduction. This is
called Kernel PCa (K PLAY)-

from sklearn.decomposition import KernelPCA
rf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.04)
X_reduced = rbf_pca fit_transform(X)

Linear kernel RBF kernel, y=0.04 Sigmoid kernel, y=1073,r=1
0.4 4
10 0.2 -
0.2 os
i e 0.1 1
2 0.0 1 '0‘ '.'.'.'
22 4| ° |
0 . : s !:o 0.0
.’ "
-5 - - | " -0.1 1
0.4‘ LS
A Y ‘:0..
_10— "'0.6' ‘*:' _0.2 9
~10 0 10 -0.75 -0.50 -0.25 0.00 0.25 -0.2 0.0 0.2
Z1 4| 21

shows the Swiss roll, reduced to two dimensions using a linear kernel(equivalent to simply using the PCA
class), an RBF kernel, and a sigmoid kernel.

—gAnother approach, this time entirely unsupervised, is to select the kernel and hyperparameters that yield
the lowest reconstruction error. Note that reconstruction is not as easy as with linear PCA. Here’s why.
Figure shows the original Swiss roll 3D dataset (top left) and the resulting 2D dataset after kPCA is
applied using an RBF kernel (top right). Thanks to the kernel trick, this transformation is mathematically
equivalent to using the feature map ¢ to map the training set to an infinitedimensional feature space
(bottom right), then projecting the transformed training set down to 2D using linear PCA.

Original space Reduced space

Vi (implicity A

’ .)
* W+ PCA - :Reconstruction
-~ -
r' \ /,

:f..;;‘&'h 4

" 3

;x!-;h v XX 3
Ko XTan | :::-z;
:w§ “‘*:xﬁ »x ; *x |
4 s :tm e ."-._
tsx B f’ ® Bt s 5 698 anns?®

== i/ =D

Reconstruction pre-image Feature space 2

SLie [ey L mm&ak];,.

Locally Linear Embedding (LLE) is another powerful nonlinear dimensionality reduction (NLDR)
technique. It is a Manifold Learning technique that does not rely on projections, like the previous
algorithms do. In a nutshell, LLE works by first measuring how each training instance linearly relates to
its closest neighbors (c.n.), and then looking for a low-dimensional representation of the training set
where these local relationships are best preserved. This approach makes it particularly good at unrolling
twisted manifolds, especially when there is not too much noise.

from sklearn.manifold import LocallyLinearEmbedding
lle = LocallyLinearEmbedding(n_components=2, n_neighbors=10)
X_reduced = lle.fit_transform(X)

—p gHux D&mwu'eijl-a Rediution Tamﬁoluu &=
© Ramdont Projetiont @ LbA
@ Mk dinn sioval .scow\a (MBI
® ‘Isvwfa
@) t-SNE

- CA/ufior < @7 -

—_ u ' < ’[A 9 0_
. Umé]f_f&wl{ﬂ M ﬂﬁ“ﬁ,m .

Although most of the applications of Machine Learning today are based on supervised learning (and as a
result, this is where most of the investments go to), the vast majority of the available data is unlabeled:
we have the input features X, but we do not have the labels y. The computer scientist Yann LeCun
famously said that “if intelligence was a cake, unsupervised learning would be the cake, supervised
learning would be the icing on the cake, and reinforcement learning would be the cherry on
the cake.” In other words, there is a huge potential in unsupervised learning that we have only barely
started to sink our teeth into.

Clustering

The goal is to group similar instances together into clusters. Clustering is a great
tool for data analysis, customer segmentation, recommender systems, search
engines, image segmentation, semi-supervised learning, dimensionality reduc-
tion, and more.

Anomaly detection

The objective is to learn what “normal” data looks like, and then use that to
detect abnormal instances, such as defective items on a production line or a new
trend in a time series.

Density estimation

—b

This is the task of estimating the probability density function (PDF) of the random
process that generated the dataset. Density estimation is commonly used for
anomaly detection: instances located in very low-density regions are likely to be
anomalies. It is also useful for data analysis and visualization.

MU%‘E-'

e itis the task of identifying similar instances and assigning them to clusters, or groups of similar

=D

instances. L& coud m*eyﬁ«ca,.

Just like in classification, each instance gets assigned to a group. However, unlike classification,
clustering is an unsupervised task. Consider Figure : on the left is the iris dataset, where each instance’s
species (i.e., its class) is represented with a different marker. It is a labeled dataset, for which
classification algorithms such as Logistic Regression, SVMs, or Random Forest classifiers are well
suited. On the right is the same dataset, but without the labels, so you cannot use a classification
algorithm anymore. This is where clustering algorithms step in: many of them can easily detect the lower-
left cluster. It is also quite easy to see with our own eyes, but it is not so obvious that the upper-right
cluster is composed of two distinct sub-clusters. That said, the dataset has two additional features
(sepal length and width), not represented here, and clustering algorithms can make good use of all
features, so in fact they identify the three clusters fairly well (e.g., using a Gaussian mixture model, only 5
instances out of 150 are assigned to the wrong cluster).

251 Iris setosa s::: :-..:.’:
200 T Meveomes et ad = | P o Pation gt
311 . N'.E‘-"' . VE st R&q’“”bbf‘
EEI.D- " un Soade V\z’
o0 S T S S '1'-:- -
Petal length Petal length
— g fern U wd a wide \/@M&% ea, aﬂou‘fcai-fma_‘
G Pase -
Q) fa,usl-ﬂma aXlon © chw o s &ruu
wklonwusg poued ch e, mewu amgd Hu @M.'rw?
widlssile
@ Dotw Mﬂ When &,w cwalaz:. & mw ekt
& wm be mﬁw o ama;auwom?autoﬁm,
omd o a/wa«laze, easdn st xfm.ﬂi”&(a-
@ ke a dSund Qu@luhq Rued Lt o Téu,w\/&.l ‘-
@Fo’f Seas) @To 5£aw1m¢ an
(5D For sews supevied Lans

There is no universal definition of what a cluster is: it really depends on the context, and different
algorithms will capture different kinds of clusters. Some algorithms look for instances centered around a
particular point, called a centroid. Others look for continuous regions of densely packed instances: these
clusters can take on any shape. Some algorithms are hierarchical, looking for clusters of clusters. And
the list goes on.

K Means Algorithm Overview

The K-means algorithm is a popular unsupervised machine learning method used for
clustering data into K distinct groups based on feature similarity. Mathematically, it
partitions a set of n data points in a d-dimensional space into K clusters
{C1,C,,...,Ck } such that the within-cluster sum of squares (WCSS) is minimized.
Below is a detailed mathematical exposition of the K-means algorithm.

1. Mathematical Formulation

1.1. Data Representation

Let X = {x;,X3,...,X, } be a set of n data points, where each x; € R% is a d-
dimensional vector.

1.2. Cluster Centers

The goal is to find K cluster centers (also called centroids) {ft;, i£s, - - -, i }» Where
each p, € RY, that best represent the clusters.

1.3. Objective Function

K-means aims to minimize the within-cluster sum of squares (WCSS), which is

defined as:

K
wess =3 3w — |

k=1 x; €Cy,

Where:
o (% is the set of points assigned to cluster k.

e ||xi — p||? is the squared Euclidean distance between point x; and centroid g, .

1.4. Optimization Problem

Formally, the K-means clustering problem can be stated as:

K
. 2
min X; —
{ck},{nk}z 2 i =

k=1 x; €Cy
Subject to:
e Cr C X for all k.
° UkK=1 Cr = &.

e Cr,NCr =0 forall k # K.

2. Algorithm Steps

The K-means algorithm iteratively optimizes the objective function through two main
steps: Assignment and Update.

2.1. Initialization

« Random Initialization: Select K distinct data points randomly from X as the

initial centroids {ugo) , ugo) yee ,uﬁ? }.

e Alternative Methods: Techniques like K-means++ can be used to choose initial

centroids to improve convergence and solution quality.

2.2. Assignhment Step

Given the current centroids {p,gt) , u;t) yoon ,p,;?} at iteration ¢, assign each data point

to the nearest centroid:
0 = {x e |l Wl I < I —) PV € 12 K}

2.3. Update Step

Recompute the centroids as the mean of all data points assigned to each cluster:

(t+1) 1 . _
[TA _—|C’(t)| Z x; foreachk=1,2,...,K

ket

2.4. Convergence Criteria

The algorithm repeats the Assignment and Update steps until one of the following

conditions is met:

1. Centroid Stabilization: The centroids do not change significantly between

(t+1)

iterations, i.e., |[p, 7 — ug) | < eforall k, where € is a small threshold.

2. Maximum Iterations: A predefined maximum number of iterations is reached.

3. No Change in Assignments: The cluster assignments {C}, } do not change
between consecutive iterations.

3. Mathematical Properties

3.1. Convergence

K-means is guaranteed to converge to a local minimum of the WCSS objective
function. However, it may not find the global minimum due to its dependence on the
initial centroid positions.

3.2. Computational Complexity

Each iteration of the K-means algorithm has a computational complexity of O(nKd),
where:

e n is the number of data points.
e K is the number of clusters.

e d is the dimensionality of the data.

The total complexity depends on the number of iterations until convergence.

3.3. Optimality

K-means solves the clustering problem via Lloyd's algorithm, which is an instance of
the Expectation-Maximization (EM) algorithm for Gaussian mixtures with equal
spherical covariance and equal priors. However, K-means assumes clusters are convex
and isotropic, which may not hold in all datasets.

4. Extensions and Variations

Several variations of the K-means algorithm have been proposed to address its
limitations:

« K-means++: Improves initialization by spreading out the initial centroids,
leading to better convergence properties.

e Mini-Batch K-means: Uses small random subsets (mini-batches) of data for
updates, enhancing scalability for large datasets.

 Kernel K-means: Extends K-means to non-linear cluster boundaries by applying

kernel functions.

5. Example
Consider a simple 2-dimensional dataset with n = 4 points:

X ={x; =(1,2), x, =(1,4), x3 = (1,0), x4, = (10,2)}
Let K = 2.

Initialization:

 Suppose we randomly choose ‘40) = (1,2) and [.Lgo) = (10, 2).

Assignment:

0
e x; and x4y are closer to Mg),

e X3 is closer to ugo) :

* X4 is assigned to p,go) :

Update:
o New i) = 1((1,2) + (1,4) + (1,0)) = (1,2)
« New p,gl) = (10, 2) (unchanged)

Convergence:

e Since the centroids did not change, the algorithm converges with the final

clusters:
e C1 ={x1,%x2,%x3}

« O ={x4}

6. Limitations

* Choosing K: Determining the optimal number of clusters K is non-trivial and
often requires methods like the EIbow Method or Silhouette Analysis.

e Sensitivity to Initialization: Poor initial centroid selection can lead to
suboptimal clustering.

e Assumption of Spherical Clusters: K-means works best when clusters are
spherical and equally sized, which may not hold for all datasets.

e Scalability: While efficient for small to medium-sized datasets, K-means can be
computationally intensive for very large datasets without modifications like Mini-
Batch K-means.

7. Conclusion

Mathematically, K-means is an iterative optimization algorithm aimed at partitioning
data into K clusters by minimizing the within-cluster variance. Its simplicity and
efficiency make it a widely used clustering technique, though it comes with
assumptions and limitations that must be considered in practical applications.

o £ g Lionn « igten W K Meare

—» k=¢ k) fawaljferf
—B Yo = KMears (0 - duantes ¥ Mzarn

—b \Hami’*‘ KM'H*’”‘M&LK}

X1

The vast majority of the instances were clearly assigned to the appropriate cluster, but a few instances
were probably mislabeled (especially near the boundary between the top-left cluster and the central
cluster). Indeed, the K-Means algorithm does not behave very well when the blobs have very different
diameters because all it cares about when assigning an instance to a cluster is the distance to the
centroid. Instead of assigning each instance to a single cluster, which is called hard clustering, it can be
useful to give each instance a score per cluster, which is called soft clustering. The score can be the
distance between the instance and the centroid; conversely, it can be a similarity score (or affinity), such
as the Gaussian Radial Basis Function.

5/5

—»
The computational complexity of the algorithm is generally linear with regard to the number of instances
m, the number of clusters k, and the number of dimensions n. However, this is only true when
the data has a clustering structure. If it does not, then in the worstcase scenario the complexity can
increase exponentially with the number of instances. In practice, this rarely happens, and K-Means is
generally one of the fastest clustering algorithms.

—b (e s bl aaiien nudlrod -

S

If you happen to know approximately where the centroids should be (e.g., if you ran another clustering
algorithm earlier), then you can set the init hyperparameter to a NumPy array containing the list of
centroids, and set n_init to 1:

good_init = np.array([[-3, 3], [-3, 2], [-3, 1], [-1, 2], [0, 2]])
kmeans = KMeans(n_clusters=5, init=good_init, n_init=1)

Another solution is to run the algorithm multiple times with different random initializations and keep the
best solution. The number of random initializations is controlled by the n_init hyperparameter: by default,
it is equal to 10, which means that the whole algorithm described earlier runs 10 times when you call fit(),
and ScikitLearn keeps the best solution. But how exactly does it know which solution is the

best? It uses a performance metric! That metric is called the model's inertia, which is the mean squared
distance between each instance and its closest centroid.

An important improvement to the K-Means algorithm, K-Means++, was proposed in a 2006 paper by
David Arthur and Sergei Vassilvitskii.3 They introduced a smarter initialization step that tends to select
centroids that are distant from one another, and this improvement makes the K-Means algorithm much
less likely to converge to a suboptimal solution. They showed that the additional computation required
for the smarter initialization step is well worth it because it makes it possible to drastically reduce the
number of times the algorithm needs to be run to find the optimal solution.

—»
Instead of using the full dataset at each iteration, the algorithm is capable of using mini-batches, moving

the centroids just slightly at each iteration. This speeds up the algorithm typically by a factor of three or
four and makes it possible to cluster huge datasets that do not fit in memory. Scikit-Learn implements
this algorithm in the MiniBatchKMeans class. You can just use this class like the KMeans class:

from sklearn.cluster import MiniBatchKMeans
minibatch_kmeans = MiniBatchKMeans(n_clusters=5)
minibatch_kmeans.fit(X)

— Muwbataw @ qumm WMKWMMW
s wdw ke (K‘3V“°°1 contveddue)

—B
It is important to scale the input features before you run K-Means or the clusters may be very stretched

and K-Means will perform poorly. Scaling the features does not guarantee that all the clusters will be nice
and spherical, but it generally improves things.

—» DRSS N o

This algorithm defines clusters as continuous regions of high density. Here is how it works:

“ For each instance, the algorithm counts how many instances are located within a small distance
e (epsilon) from it. This region is called the instance’s eneighborhood.

. If an instance has at least min_samples instances in its e-neighborhood (including itself), then it
is considered a core instance. In other words, core instances are those that are located in dense
regions.

- All instances in the neighborhood of a core instance belong to the same cluster. This
neighborhood may include other core instances; therefore, a long sequence of neighboring core
instances forms a single cluster.

. Any instance that is not a core instance and does not have one in its neighborhood is considered
an anomaly

—Dihy wmmwozuwﬂmm MMtww duwvcwfuau

—® This clustering is represented in the lefthand plot of . As you can see, it identified quite a lot of anomalies,
plus seven different clusters. How disappointing! Fortunately, if we widen each instance’s neighborhood
by increasing eps to 0.2, we get the clustering on the right, which looks perfect. Let’s continue with this

model.
eps=0.05, min_samples=5 eps=0.20, min_samples=5
1.0 4
0.5 1
X2
0.0 -
-0.5
-1 0 1 2
X1 X1
(5] °
br6 - M?AAJDM KRaAung
—D

DBSCAN is a very simple yet powerful algorithm capable of identifying any number of clusters of any
shape. It is robust to outliers, and it has just two hyperparameters (eps and min_samples). If the density
varies significantly across the clusters, however, it can be impossible for it to capture all the clusters
properly. Its computational complexity is roughly O(m log m), making it pretty close to linear with regard
to the number of instances, but Scikit-Learn’s implementation can require up to. O(_ﬂl" memory if eps
is large.

