@ BASICS FOR BEGINNERS
Table of Contents @ SOL

1 INtroduCtion t0 SQLcoiiiiiiiiiiie et s s 6
1.1 Data Definition Language (DDL).......cccueeeruieeiiiieeeeiieeesieeeesvteeesseeeeesrreeesneeeesnsaeeeenns 8
1.2 Data Manipulation Language (DIVIL)ccccueeeiiiiieeeeieieeeieee e sitee e sitee e evree e snee e e esnveeeenes 8

2 INtroduction 0 SQL SEIVETeiiiiiiiieiitee ettt s e e s 9
2.1 SQL Server Management StUIOcoiuuiiiiii i e e e 10

2.1.1 Create @ NeW Database......cc.eeiiiiiiiiiiieieiiie e 11
2.1.2 QUETIES et e e e e e e e e e e s 12

3 CREATE TABLE ..ottt ettt et st e st e et e esabeeebeeeabeeenaeeeanneeas 13
3.1 Database MOEIlING........cuuiiiiiiiiiiiii e e e s s rarae e e e eas 15
3.2 Create Tables using the Designer TOOIScvcuuiiiiiiiiiiiiiee e sreee e 17
3.3 SQL CONSIIAINTS...uuuiiiiiiiiiiiiiiieee e e e e e e e e e 17

3.3.1 PRIMARY KEY ..ottt ettt ettt et ettt st e e sabeesbeesatesnneeenneeanas 18
3.3.2 FOREIGN KEY ..ottt ettt ettt ettt e s beesbe e s bt e s nneeenaeeanas 19
3.3.3 NOT NULL / ReqUuired COIUMNSueeeiieeiieeiee ettt sree s et eeeveeesveeesaae e 22
334 UNIQUE .ottt et ettt s e e st e st e e sbe e sate e saeeenaeeenas 23
3.3.5 CHECK ettt ettt ettt st e e bt e s bt e e at e e naeeenaeee e 25
3306 DEFAULT ..ttt ettt ettt st e st e s abe e sbe e s bt e s saeeesaeeenas 27
3.3.7 AUTO INCREMENT OF IDENTITY ..uutiiiiieeiieeiee ettt sttt et s 28

3.4 ALTER TABLE ...ttt ettt ettt ettt et st e st e e s bt e sbe e s beeesaeeesaeeenas 29

A INSERT INTO ittt ettt et ettt ettt e st e et e s bt e e be e e bt e e bt e e sabeesabeesaes 31
D UPDATE ettt ettt st b e bt e bt e bt e e h bt e sh bt e e bt e e beeebe e e bt e ebee s 33

Ravit Jain
SQL BASICS FOR BEGINNERS

4 Table of Contents

B DELETE ..ttt e e b e s e e s a b e e e e r e e e s eab e e e e nanaeeennnes 35
/2 = 1 O L PP PPPTOPPPPTPPRPTIN 37
7.1 The ORDER BY KEYWOIQ.....cciiiiiiiiiiieiiiiee ettt ettt sttt st e e 39
7.2 SELECT DISTINCT .ttt ettt ettt ettt ettt ettt et e st e st e e e et e e s mne e e e nneeeennees 40
7.3 The WHERE ClIaUSE......coiiiiiiiiiiiee ettt ettt st e e e e 40
7.3 1 OPEIAtOrS oottt e e e e e et ettt e e e e e e e eeeeneeee 41
7.3.2 LIKE OPEIatOr it e ettt s e e e e e e e e e eeeeeee 41
0 TS T 1\ O] o 1= - 1 {0] USSP U OPPPPPPPPPPRPIN 42
7.3.4 BETWEEN OPerator ettt s e s e e e e e e e eeneee 42

% V1 1o [o [PP PRSP PPOPPPTRP 42
7.5 AND & OR OPEIAtOrS uuuuuuiiiiiiiiiiitieeieeteeeeee s eesse st rerree et eeeeeeaeeesessssssessaasbbanaaeeeaeeeeas 43
7.6 SELECT TOP ClaUSE.....eeiiiiiiiiiiiiie ettt ettt ettt ettt e st e st esare e e e nnees 44
2 A [T 1 PP PP PP PP OPPPRP 45
T8 JOINS e e 45
7.8.1 Different SQLJOINS ...cccuiiiiiiiieeeiie ettt ir e e nree s 46

TN O] Yol T o £SO PP PP PP P PPPPPPPPPPPTRPIR 48
8.1 USING COMMEBNTS ..ttt e e e e e e e e e ettt et e e e e e e e e e e eeeenenes 48
8.1.1 Single-liN@ COMMENT.......uiiiiiiiiiiiee e e e s sree e e e s e nanes 48
8.1.2 Multiple-line COMMENT.....ciiiiiiiiee e e 48

8.2 VAriables e s 49
8.3 Built-in Global Variablescoo i 50
8.3.1 @ @IDENTITY ¢ttt ettt ettt ettt et e e ettt e st e e e ab e e e bb e e e e b e e e enneeens 50

8.4 FIOW CONTION .ottt st e s rabe e e e 51
T ot R | el = Y PP P PP PP PPPPOTP 51
842 WHILE ..ttt ettt e e et e e et e e s nr e e e nnee s 52
843 CASE. . e st e e a e e et e e st e e e anree s 53

@ Structured Query Language (SQL)

5 Table of Contents

844 CURSOR ..ttt ettt ettt e et e st e e e ba e e e bb e e s b e e e e nree s 54

O VWS ittt et e e e et e e e e e e e e e s e b reee e e e e nnee 56
9.1 Using the Graphical DESIZNEToiiiiiiiiiiiee e e e 57
10 SEOrEd PrOCEAUIESciiiiieieetee et et et e et e e sbt e s et e e s snneeeeaee 61
10.1 NOCOUNT ON/NOCOUNT OFF...ceiiiiiiniienienie st eteeteeee e sieesaeesaeesseeseeeenes 64
11 FUNCTIONS e s s e e e e e e e e s e nnnneeas 66
11.1 BUIIE-IN FUNCLIONS ...t s 66
11.11 STNG FUNCTIONS 1o e e e e e e e e e e s e e s s aaabbaees 66
11.1.2 Date and Time FUNCLIONSo.uuiiiiiiieiiiiie ettt 67
11.1.3 Mathematics and StatisticsS FUNCLIONSeeiiiiiiiiiiieieiieceee e 67
11.1.4 AVG() ettt ettt ettt ettt sttt st e a e e e h et e nht e e s b e et e e e bt e e beeenee s 68
11.15 COUNT() eeeeueeeeuteesite et e st e st e et e et e et eesae e e s aaeesabeesabeesabeesabeesabeeeseeennaeesaneenns 68
11.1.6 The GROUP BY Statement......ccooueiiiiiiieiiieeeiiee et 69
11.1.7 The HAVING ClaUuSe..cccuuiieiiiiieeeiiee ettt s 70

11.2 User-defined FUNCLIONSc.uiiiiiiiiieeieceitee et 71
12 BT === ST PP PUPPPPPPPP 72
13 Communication from other ApplicationS........c.uuviiiiiiiiiiiii e 75
13.1 (05 2] G PP PPPPOPPPPPPI 75
13.2 MICTOSOTE EXCEL.ccnniiiiiiiieee e e 76
14 RETEIENCES. ...ttt et e e e be e e et e e st e e e nreeens 78

e Structured Query Language (SQL)

1Introduction to SQL

SQL (Structured Query Language) is a database computer language designed for managing
data in relational database management systems (RDBMS).

SQL, is a standardized computer language that was originally developed by IBM for querying,
altering and defining relational databases, using declarative statements.

SQL is pronounced /s kju: 'el/ (letter by letter) or /'sizkwal/ (as a word).

SQL - Structured Query language

A Database Computer Language designed for Managing Data in
Relational Database Management Systems (RDBMS)

Query Examples:

* insert into STUDENT (Name , Number, SchoolId)
values ('John Smith', '100005', 1)

* select SchoollId, Name from SCHOOL
* select * from SCHOOL where SchoolId > 100
¢ update STUDENT set Name='John Wayne' where StudentId=2

e delete from STUDENT where SchoolId=3

We have 4 different Query Types: INSERT, SELECT, UPDATE and DELETE

What can SQL do?

e SQL can execute queries against a database
e SQL can retrieve data from a database

e SQL caninsert records in a database

e SQL can update records in a database

e SQL can delete records from a database

7 Introduction to SQL

e SQL can create new databases

e SQL can create new tables in a database

e SQL can create stored procedures in a database

e SQL can create views in a database

e SQL can set permissions on tables, procedures, and views

Even if SQL is a standard, many of the database systems that exist today implement their
own version of the SQL language. In this document, we will use the Microsoft SQL Server as
an example.

There are lots of different database systems, or DBMS — Database Management Systems,
such as:

e Microsoft SQL Server
o Enterprise, Developer versions, etc.
o Express version is free of charge
e Oracle
e MySQL (Oracle, previously Sun Microsystems) - MySQL can be used free of charge
(open source license), Web sites that use MySQL: YouTube, Wikipedia, Facebook
e Microsoft Access

e |IBM DB2
e Sybase
o .. lots of other systems

In this Tutorial, we will focus on Microsoft SQL Server. SQL Server uses T-SQL (Transact-SQL).
T-SQL is Microsoft's proprietary extension to SQL. T-SQL is very similar to standard SQL, but
in addition it supports some extra functionality, built-in functions, etc.

Structured Query Language (SQL)

8 Introduction to SQL

Other useful Tutorials about databases:

e Introduction to Database Systems
e Database Communication in LabVIEW

These Tutorials are located at: https://www.halvorsen.blog

1.1 Data Definition Language (DDL)

The Data Definition Language (DDL) manages table and index structure. The most basic
items of DDL are the CREATE, ALTER, RENAME and DROP statements:

e CREATE creates an object (a table, for example) in the database.

e DROP deletes an object in the database, usually irretrievably.

e ALTER modifies the structure an existing object in various ways—for example, adding
a column to an existing table.

1.2 Data Manipulation Language (DML)

The Data Manipulation Language (DML) is the subset of SQL used to add, update and delete
data.

The acronym CRUD refers to all of the major functions that need to be implemented in a
relational database application to consider it complete. Each letter in the acronym can be
mapped to a standard SQL statement:

Operation sQL Description
Create INSERT INTO inserts new data into a
database
Read (Retrieve) SELECT extracts data from a database
Update UPDATE updates data in a database
Delete (Destroy) DELETE deletes data from a database

Structured Query Language (SQL)

2Introduction to SQL Server

Microsoft is the vendor of SQL Server.

We have different editions of SQL Server, where SQL Server Express is free to download and
use.

SQL Server uses T-SQL (Transact-SQL). T-SQL is Microsoft's proprietary extension to SQL. T-
SQL is very similar to standard SQL, but in addition it supports some extra functionality, built-
in functions, etc. T-SQL expands on the SQL standard to include procedural programming,
local variables, various support functions for string processing, date processing,
mathematics, etc.

SQL Server consists of a Database Engine and a Management Studio (and lots of other stuff
which we will not mention here). The Database engine has no graphical interface - it is just a
service running in the background of your computer (preferable on the server). The
Management Studio is graphical tool for configuring and viewing the information in the
database. It can be installed on the server or on the client (or both).

K. Microsoft SQL Server Management Studio
File Edt View Tools Window Community Help
2 NewQuery [y | [|5 =g
Object Explorer - 3 X Object Explorer Details v X
Connect~ | @7 4J 2 3 [CRENe P-4 2] & search
= [PCBB23S\DEVELOPMENT (SQU Server 10.0.0A | | pgg23s|DEVELOPMENT (SQL Server 10.0.2531 - sa)\Databases\TEST
= [Databases
@ [System Databases Name Policy Health State
® [J SCcADA [Database Diagrams
= [Tables
+ [Database Diagrams L Views
= [Tables L Synonyms
[System Tables [Programmability
. . ® J dbo.CLASS Service Broke:
A Service running on the 5 31 dbo.sCHoOL i
- # [Views
computer in the background 5 3 Synonyms
4 [Programmability < >
4 [Service Broker — =
@ [Security ~| W TEST
< >
Ready

A Graphical User Interface to the database used for
configuration and management of the database

10 Introduction to SQL Server

2.1SQL Server Management Studio

SQL Server Management Studio is a GUI tool included with SQL Server for configuring,
managing, and administering all components within Microsoft SQL Server. The tool includes
both script editors and graphical tools that work with objects and features of the server. As
mentioned earlier, version of SQL Server Management Studio is also available for SQL Server
Express Edition, for which it is known as SQL Server Management Studio Express.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the
user to browse, select, and act upon any of the objects within the server. It can be used to
visually observe and analyze query plans and optimize the database performance, among
others. SQL Server Management Studio can also be used to create a new database, alter any
existing database schema by adding or modifying tables and indexes, or analyze
performance. It includes the query windows which provide a GUI based interface to write
and execute queries.

B [42 Microsoft SQL Server Management Studio [E=5EEH ~%
(3 \ File Edit View Query Debug Tools Window Community Help
LDk Esds 8

%3 | scHooL o ¥ Becute b v 33 (] 30 W AREEN S 2 EE|A L
Ob; oger o SQLQuerylsql- P..SCHOOL (sa (52))°| [p ~ x |[Properties v ax
(1 SﬂSQL Server V ng:eerzr'&? from SCHOOI‘I ‘\4_.) % Current connection parameters ~
N —~‘ aS::::n Databases 8 éggregate S}""”‘
. C on f
@4 ;fjg”&”r” Database Write your Query here

m

(2 @50t
L

(3 Database Diagrams

= (3 Tables
) [System Tables
[dbo.CLASS Sta Open
[dbo.COURSE B Connection
You I ® O dbo.GRADE Connection n PC88235\DEVELOF

1 dbo.SCHOOL L v " | |2 Connection Details

. I < [»
Tabless @ dwosTuvent
% [dbo.STUDENT_COURS ||| (5] Resutts | [7y Messages

[dbo.TEACHER Schoolld SchoolName Description Address Phone PostCode PostAddress
2 dbo.TEACHER_COURS 101 Tuc The best school Telemak NULL NULL NULL
@ [Views 2 2w OK School USA NULL NULL NULL
@ (3 Synonyms 3 3 NTNU The secondbest school Trondheim NULL NULL NULL
@ (3 Programmability 4 4 Universty of Oslo The third best school Oslo NULL NULL NULL
% [Service Broker
[Storage —
® Securif ()
el \4) The result from your Query
5 [J WEATHERDATA SPID >
) [Security Name
[Server queds i The name of the connection.
A atios.) (@ Query executed successfully. PC88235\DEVELOPMENT (10.50 ... | sa (52) | SCHOOL | 00:00:00 | 4 rows
Ready Lnl Col2l Ch21 INS

When creating SQL commands and queries, the “Query Editor” (select “New Query” from
the Toolbar) is used (shown in the figure above).

With SQL and the “Query Editor” we can do almost everything with code, but sometimes it is
also a good idea to use the different Designer tools in SQL to help us do the work without
coding (so much).

Structured Query Language (SQL)

11 Introduction to SQL Server

2.1.1 Create a new Database

It is quite simple to create a new database in Microsoft SQL Server. Just right-click on the
“Databases” node and select “New Database...”

¢ Microsoft SQL Server Management Studio

File Edit View Debug Tools Window Community Help

ANewQuery [y [T A 4 @5
80 03 || L2 p o I
s0Lg

Connect~ 47 &J w 7 [3] 5
= L_d PC88235 (SQL Server 10.0.2531 - sa)

ERI]Databaces

MNew Database. ..

Attach...
Restore Database. ..

Restore Files and Filegroups...

Start PowerShell

Reports »
[Secur
T3 Serve Refresh

[Replication
[Management

There are lots of settings you may set regarding your database, but the only information you
must fill in is the name of your database:

F New Database [Z]
eg ;S Script IB Help
4 Dptions
A Filegroups Database name: [
Owner: [<deiaull>] [:
Database files:
Logical Name File Type Filegroup Initial Size (MB) Autogrowth
Rows Data PRIMARY i By 1 MB, unrestricted growth
_log Log Not &pplicable By 10 percent, unrestricted ar
Server:
PC88235
Connection:
sa
1«!_# View connection properties
Ready < >
Add Remove

Structured Query Language (SQL)

12 Introduction to SQL Server

You may also use the SQL language to create a new database, but sometimes it is easier to
just use the built-in features in the Management Studio.

2.1.2 Queries

In order to make a new SQL query, select the “New Query” button from the Toolbar.

. Microsoft SQL Server Management Studio Q@@
Fil iew vy Debug Tools Window Community Help

1 New Query =" N= =

‘«E‘—'jmew@ew v - | Y Eeate b ® 33 a[] 37 | EARElEY| = 2

Object Explorer ~ & X sqLQueryl.sql..ING (sa (53))* | _Object Explorer Details
Connect~ | @3 43 w 7 G§ select * from CUSTOMEE|

=] LB PC88235\DEVELOPMENT (SQL Server 10.0.2531 - sa)|

(= [Databases (2 b
[System Databases
® | J voICING
@ | 5cADA
@ |J scHooL
® | TEST

[Security

[# [Server Objects

[Replication

[3 Management

5|

You write your
SQL Code here

<

v

[Results l) Messages |
Customerld ~ CustomerNumber LastName FirstName = AreaCode Address Phone
1000 Smith John 12 Califomia 11111111
1001 Jackson Smith 45 London 22222222
3 3 1002 Johnsen John 32 London 33333333

O

Your results will
appear in this
window

~
v

@ Query executed successfully. PC88235\DEVELOPMENT (10.0 SP1) sa(53) INVOICING 00:00:00 3 rows

Ready Lnt Col 23 ch23 NS

Here we can write any kind of queries that is supported by the SQL language.

Structured Query Language (SQL)

3CREATE TABLE

Before you start implementing your tables in the database, you should always spend some
time design your tables properly using a design tool like, e.g., ERwin, Toad Data Modeler,
PowerDesigner, Visio, etc. This is called Database Modeling.

Database Design — ER Diagram

ER Diagram (Entity-Relationship Diagram)
* Used for Design and Modeling of Databases.
* Specify Tables and relationship between them (Primary Keys and

Foreign Keys) Table Name

Example: /

Table Name |===3 BOOK CHAPTER

PK | Bookid PK | Chapterid
BookTitle FK1 | Bookld ‘\(/,CO.umn
Summary ChapterNumlif/ Names

/ ChapterTitle
. Primary Key
Primary Key /
Foreign Key

Relational Database. In a relational database all the tables have one or more relation with each other using Primary Keys
(PK) and Foreign Keys (FK). Note! You can only have one PK in a table, but you may have several FK’s.

The CREATE TABLE statement is used to create a table in a database.

Syntax:

CREATE TABLE table name
(

column namel data type,
column name2 data type,
column name3 data type,

)

The data type specifies what type of data the column can hold.

13

14 CREATE TABLE

You have special data types for numbers, text dates, etc.
Examples:

e Numbers: int, float

e Text/Stings: varchar(X) — where X is the length of the string
e Dates: datetime

e etc.

Example:

We want to create a table called “CUSTOMER” which has the following columns and data
types:

Column Name Déta Type Allow Nulls

»Z Customerld it]
CustomerMumber int]
LastMame varchar{50)]
FirstMame varchar{50)]
AreaCode int
Address varchar{50)
Phone varchar{20)

]

CREATE TABLE CUSTOMER
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

Best practice:

When creating tables you should consider following these guidelines:

e Tables: Use upper case and singular form in table names — not plural, e.g.,
“STUDENT” (not students)
e Columns: Use Pascal notation, e.g., “Studentld”
° Primary Key:
o If the table name is “COURSE”, name the Primary Key column “Courseld”, etc.

Structured Query Language (SQL)

15 CREATE TABLE

o “Always” use Integer and Identity(1,1) for Primary Keys. Use UNIQUE
constraint for other columns that needs to be unique, e.g. RoomNumber
Specify Required Columns (NOT NULL) —i.e., which columns that need to have data
or not
Standardize on few/these Data Types: int, float, varchar(x), datetime, bit
Use English for table and column names
Avoid abbreviations! (Use RoomNumber — not RoomNo, RoomNr, ...)

3.1 Database Modelling

As mention in the beginning of the chapter, you should always start with database modelling
before you start implementing the tables in a database system.

Below we see a database model in created with ERwin.

STUDENT
Studentld q

Classld (FK)
StudentName
StudentMumber

TotalGrade STUDENT_COURSE
Address Studentld (FK)
Phone b Courseld (FK)
EMail
SCHOOL
GRADE COURSE Schoolld CLASS
Gradeld Courseld SchoolName Classld
Studentld (FK) & (| Description ¢
Courseld (FK) CourseName Address Schoolld (FK)
Schoolld (FK) ClassMame
Grade D e Phone D it
e escnpl) ion PostCode escription
PostAddress
TEACHER_COURSE TEACHER
Teacherld (FK) Jleacherla
Courseld (FK) b Schoolld (FK)
TeacherName
Description

With this tool we can transfer the database model as tables into different database systems,
such as e.g., SQL Server. CA ERwin Data Modeler Community Edition is free with a 25 objects
limit. It has support for Oracle, SQL Server, MySQL, ODBC and Sybase.

Structured Query Language (SQL)

16

CREATE TABLE

Below we see the same tables inside the design tool in SQL Server.

SCHOOL
Column Name Data Type Allow Nulls CLASS
¥ Schoolld int] Cokumn Name Data Type Allow Nulls
SchoolName: varchar(50) B @ Classld int =]
Desaription varchar(1000) Schoolld int B
Address varchar(50) ClassName varchar(50) (]
Phone varchar(50) 7| Description varchar(1000) |2
PostCode varchar(50) B
PostAddress varchar(s0)
=]
COURSE Column Name Data Type Allow Nuls
Column Name Data Type Allow Nulls STUDENT_COURSE ¢ Studentld int B
@ Courssld int B Column Name Data Type Allow Nulls Classid int]
CourseName varchar(50) B Studentld int] StudentName varchar(100)]
Schoolld i] Courseld int B StudentNumber varchar(20) B
Description varchar(1000)]} TotalGrade float
] Address varchar(100)
Phone varchar(20) =
EMail varchar(100)
=]
TEACHER GRADE
TEACHER_COURSE Column Name Data Type Allow Nulls
Column Name Data Type Allow Nulls =
9 Tescherld o a Cokumn Name Datz Type Allow Nulls § Gradeld int]
. — Teacherld int B Studentld int]
Schoolld int B ld i = ld o =
Coursel int Coursa!
Taad?e"Name varchar(50) B 0 . st =
Description varchar(1000) Comment varchar(1000) @
= =]

Microsoft SQL Server — Tips and Tricks

File Edit View Query Project Debug Tools Window Help

iG] v 5 i @ | 2 NewQuery [| [} Code Snippets Manager... Ctrl+K, Ctrl+B
i 37 g || weaTHER 1Y Choose Toolbox Items...
Object Explorer ~ 0> External Tools...
Connect~ %} %) m [7] 3 Import and Export Settings...
a8 LB WIN-0VDBU4QRDPI\DEVELOPMENT (! E ize...
(= (3 Databases Options...

= | J WEATH
3 Datal

= [L3 Tabl

= 3 View

& [Syno)

= 3 Prog

[System Databases

’7
4 = 2

Do you get an error

when trying to

change your tables?

:f Options I \

™

g =

4 Environment
General
AutoRecover
Documents
Find and Replace
Fonts and Colors
Import and Export Settings
International Settings
Keyboard
Startup
Web Browser
i Source Control
b Text Editor
Query Execution
Query Results
1 Designers
» SQL Server AlwaysOn
1 SQL Server Object Explorer

Table Options

updates:

30 seconds

["]Warn on null primary keys
Warn about difference detection

Transaction time-out after:

[] Auto generate change scripts

[”] Prevent saving changes that require table re-creation

Override connection string time-out value for table designer

Make sure to uncheck

this option!

Diagram Options
Default table view:

[Column Names

Launch add table dialog on new diagram

oK

Cancel

Structured Query Language (SQL)

17 CREATE TABLE

3.2 Create Tables using the Designer Tools

Even if you can do “everything” using the SQL language, it is sometimes easier to do it in the
designer tools in the Management Studio in SQL Server.

Instead of creating a script you may as well easily use the designer for creating tables.

Step1l: Select “New Table ...”:

(=) [Databases
[# [System Databases
= | J TEST
[# [Database Diagrams

= Co e
,_ New Table... %

[+
[+
[+
B &
SRR Reports »

Filker

O

Start PowerShell

@=
®[as Refresh

[Programmability
[# [Service Broker
[# [Security

[+ [Security

[# [Server Objects

[# [Replication

[+ [_J Management

Step2: Next, the table designer pops up where you can add columns, data types, etc.

Column Name Data Type Allow Mulls

»Z Customerld Fint]
CustomerMumber int]
LastMame varchar{50)]
FirstMame varchar{50)]
AreaCode int
Address varchar{50)
Phone varchar{20)

]

In this designer we may also specify Column Names, Data Types, etc.

Step 3: Save the table by clicking the Save button.

3.3SQL Constraints

Constraints are used to limit the type of data that can go into a table.

Structured Query Language (SQL)

18 CREATE TABLE

Constraints can be specified when a table is created (with the CREATE TABLE statement) or
after the table is created (with the ALTER TABLE statement).

Here are the most important constraints:

e PRIMARY KEY

e NOT NULL

e UNIQUE

e FOREIGN KEY
e CHECK

e DEFAULT

e [DENTITY

In the sections below we will explain some of these in detail.

3.3.1 PRIMARY KEY

The PRIMARY KEY constraint uniquely identifies each record in a database table.

Primary keys must contain unique values. It is normal to just use running numbers, like 1, 2,
3,4,5, ... as values in Primary Key column. It is a good idea to let the system handle this for
you by specifying that the Primary Key should be set to identity(1,1). IDENTITY(1,1) means
the first value will be 1 and then it will increment by 1.

Each table should have a primary key, and each table can have only ONE primary key.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

)

GO

As you see we use the “Primary Key” keyword to specify that a column should be the
Primary Key.

Customerld™, CustomerMumber = LastName FirstName AreaCode Address Phone

(EL— Primary Keys must contain unique 111111

numbers like this 222222
T E—— 333333

Structured Query Language (SQL)

19

CREATE TABLE

Setting Primary Keys in the Designer Tools:

If you use the Designer tools in SQL Server, you can easily set the primary Key in a table just
by right-click and select “Set primary Key”.

Column Name

» : Schoolld int
? Set Primary Key
Jﬁu Insert Column

Delete Column

Relationships...
Indexes/Keys...

Fulltext Index...

XML Indexes...

Check Constraints...
Spatial Indexes...
Generate Change Script...

Properties

Data Type Allow Nulls

Alt+Enter

OEEEEEOO

PC88235\DEVELOP...EST - dbo.SCHOOL* X FeljSad STl EETE

The primary Key column will then have a small key % in front to illustrate that this column is

a Primary Key.

3.3.2 FOREIGN KEY

A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Data Type
int
int
varchar(50)
varchar(1000)

Allow Mulls

OxO0O0O

Example:
CLASS
SCHOOL Column Name
Column Name Data Type Allow Nulls % Classid
% Schoolld int O D Schoolld

SchoolName varchar(50) O Classhame
Description varchar(1000) Description
Address varchar(50)
Phone varchar(50)
PostCode varchar(50)
Postaddress varchar{S0)

O

We will create a CREATE TABLE script for these tables:

Structured Query Language (SQL)

20 CREATE TABLE

SCHOOL:

CREATE TABLE SCHOOL
(
SchoolId int IDENTITY (1,1) PRIMARY KEY,
SchoolName varchar (50) NOT NULL UNIQUE,
Description varchar (1000) NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,
PostCode varchar (50) NULL,
PostAddress varchar (50) NULL,
)
GO

CLASS:

CREATE TABLE CLASS
(
ClassId int IDENTITY (1,1) PRIMARY KEY,
SchoolId int NOT NULL FOREIGN KEY REFERENCES SCHOOL (SchoolId),
ClassName varchar (50) NOT NULL UNIQUE,
Description varchar (1000) NULL,
)
GO

The FOREIGN KEY constraint is used to prevent actions that would destroy links between
tables.

The FOREIGN KEY constraint also prevents that invalid data from being inserted into the
foreign key column, because it has to be one of the values contained in the table it points to.

Setting Foreign Keys in the Designer Tools:

If you want to use the designer, right-click on the column that you want to be the Foreign
Key and select “Relationships...”:

Structured Query Language (SQL)

21 CREATE TABLE

PC88235\DEVELOPM...TEST - dbo.CLASS X HeliTadsGIlIEdE el

Column Name Data Type Allow Nulls
® Classld int
) Schoolld int

........

Set Primary Key
Insert Column
Delete Column

O8O0 O

Relationships...
Indexes/Keys...
Fulltext Index...
XML Indexes...
Check Constraints...

Spatial Indexes...

Generate Change Script...

i & E@ s B gl et =

Properties Alt+Enter

The following window pops up (Foreign Key Relationships):

Foreign Key Relationships 2l

Selected Relationship:

FK_CLASS_CLASS* Editing properties for new relationship. The 'Tables And Columns
Specification’ property needs to be filled in before the new relationship will be
accepted.

4 (General)
Check Existing Data On Creati Yes
.
Foreign Key Base Table CLASS
Foreign Key Columns Classld
Primary/Unique Key Base CLASS
Primary/Unique Key Colu Classld
4 Identity
(Name) FK_CLASS_CLASS

Description
[01 4 Table Designer i
Add || Delete |

Click on the “Add” button and then click on the small “...” button. Then the following window
pops up (Tables and Columns):

Structured Query Language (SQL)

22

CREATE TABLE

=

Tables and Columns

Relationship name:

(2)l

FK_CLASS_SCHOOL

Primary key table: @

| scHoOL | class

Schoolld v Schoolld

! !

Select Primary
Key Column

Foreign key table: @

Select Foreign
Key Column

| ok

Cancel

Here you specify the primary Key Column in the Primary Key table and the Foreign Key

Column in the Foreign Key table.

3.3.3

The NOT NULL constraint enforces a column to NOT accept NULL values.

NOT NULL / Required Columns

The NOT NULL constraint enforces a field to always contain a value. This means that you
cannot insert a new record, or update a record without adding a value to this field.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(

CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,

FirstName varchar (50) NOT NULL,

AreaCode int NULL,

Address varchar (50) NULL,

Phone varchar (50) NULL,

Structured Query Language (SQL)

23 CREATE TABLE

We see that “CustomerNumber”, “LastName” and “FirstName” is set to “NOT NULL”, this
means these columns needs to contain data. While “AreaCode”, “Address” and “Phone” may
be left empty, i.e, they don’t need to be filled out.

Note! A primary key column cannot contain NULL values.

Setting NULL/NOT NULL in the Designer Tools:

In the Table Designer you can easily set which columns that should allow NULL or not:

' PC88235\DEVELOP...EST - dbo.SCHOOL X geliHads il gbo el

Column Name Data Type Allow Nulls
»7 i Schoolld int 0]
SchoolName varchar(50)]
Description varchar(1000)
Address varchar(50)
Phone varchar(50)
PostCode varchar(50)
PostAddress varchar(50) \ J

3.3.4 UNIQUE

The UNIQUE constraint uniquely identifies each record in a database table. The UNIQUE and
PRIMARY KEY constraints both provide a guarantee for uniqueness for a column or set of
columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on it.

Note! You can have many UNIQUE constraints per table, but only one PRIMARY KEY
constraint per table.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,

Structured Query Language (SQL)

24 CREATE TABLE

Phone varchar (50) NULL,

)
GO

We see that the “CustomerNumber” is set to UNIQUE, meaning each customer must have a

unique Customer Number. Example:

LastName = FirstName @ AreaCode Address Phone
Smith John 12 California 11111111

Customerld ustomerNumbe

1 i1 11000
2 2 1001 Jackson Smith 45 London 22222222
3 3 02 Johnsen John 32 London 33333333

Setting UNIQUE in the Designer Tools:

If you want to use the designer, right-click on the column that you want to be UNIQUE and

select “Indexes/Keys...”:

PC88235\DEVELOP...EST - dbo.SCHOOL X HelJZadSGIMIEavEENH

Column Name Data Type Allow Nulls
? Schoolld int [l
'Yl SchoolName e =
- ? Set Primary Key
Description u
i Insert Column
Address
¥ Delete Column
Phone
o Relationships...
PostCode A Indexes/K
2] Indexes/Keys...
PostAddress : =
% Fulltext Index...
2l XML Indexes...
Check Constraints...
.‘,ﬁ Spatial Indexes...
A4 Generate Change Script...
;;é, Properties Alt+Enter

Then click “Add” and then set the “Is Unique” property to “Yes”:

Structured Query Language (SQL)

25 CREATE TABLE

Indexes/Keys [? (=]

Selected Primary/Unique Key or Index:

IX_SCHOOL* Editing properties for new unique key or index.
PK_SCHOOL

4 iGeneral)

Columns Schoolld (ASC)

unaue |8

Type _
4 Identity No

(Name) X_SCTHUUL

Description

4 Table Designer
Create As Clustered No

> Data Space Specification PRIMARY

> Fill Specification i
)]
=

3.3.5 CHECK

The CHECK constraint is used to limit the value range that can be placed in a column.

If you define a CHECK constraint on a single column it allows only certain values for this
column.

If you define a CHECK constraint on a table it can limit the values in certain columns based
on values in other columns in the row.

Example:

CREATE TABLE [CUSTOMER]
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE CHECK (CustomerNumber>0),
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,
)
GO

In this case, when we try to insert a Customer Number less than zero we will get an error
message.

Setting CHECK constraints in the Designer Tools:

If you want to use the designer, right-click on the column where you want to set the
constraints and select “Check Constraints...”:

Structured Query Language (SQL)

26 CREATE TABLE

PC88235\DEVELOP...- dbo.CUSTOMER X Eel[Sad SIS el

Column Name Data Type Allow Nulls
? Customerld int [
CustomerName varchar(50) m
» - =
Address ? SetPrimary Key
Phone uﬁu Insert Column
PostCode “‘f" Delete Column
PostAddress 335 Relationships...
EMail 2] Indexes/Keys...
,-,—é Fulltext Index...
1! XML Indexes...
(3] Check Constraints...
:E Spatial Indexes...
A Generate Change Script...
= roperties Alt+Enter

Then click “Add” and then click “...” in order to open the Expression window:

Check Constraints

Selected Check Constraint:

CK_CUSTOMER* Editing properties for new check constraint. The 'Expression’ property needs
to befilled in before the new check constraint will be accepted.

4 (General) @j
-

4 Identity
(Name) CK_CUSTOMER
Description
4 Table Designer
Check Existing Data On Creati Yes
Enforce For INSERTs And UPC Yes
Enforce For Replication Yes

1@[|

oo

In the Expression window you can type in the expression you want to use:

Structured Query Language (SQL)

27

CREATE TABLE

Check Constraint Expression

Expression:

-

(2 |l

CustomerNumber>0

Cancel

3.3.6 DEFAULT

The DEFAULT constraint is used to insert a default value into a column.

The default value will be added to all new records, if no other value is specified.

Example:

CREATE TABLE [CUSTOMER]

(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
Country varchar (20) DEFAULT 'Norway',
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

)

GO

Setting DEFAULT values in the Designer Tools:

'’

Select the column and go into the “Column Properties”:

Column Properties ‘

4 (General)
(Name)
Allow Nulls
Data Type

Length

Country
Yes

varchar

Default Value or Binding ‘Norway'

50

Structured Query Language (SQL)

28 CREATE TABLE

3.3.7 AUTO INCREMENT or IDENTITY

Very often we would like the value of the primary key field to be created automatically every
time a new record is inserted.

Example:

CREATE TABLE CUSTOMER

(
CustomerId int IDENTITY(1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

)

GO

As shown below, we use the IDENTITY() for this. IDENTITY(1,1) means the first value will be 1
and then it will increment by 1.

Setting identity(1,1) in the Designer Tools:

We can use the designer tools to specify that a Primary Key should be an identity column
that is automatically generated by the system when we insert data in to the table.

Click on the column in the designer and go into the Column Properties window:

Column Properties

EPE

Data Type int
Default Value or Binding
4 Table Designer
Collation <database default>

> Computed Column Specification

Condensed Data Type int
Description
Deterministic Yes
DTS-published No
> Full-text Specification No
Has Non-SOL Server Subscriber No
a Identity Specification Yes
(Is Identity) Yes
Identity Increment 1
Identity Seed 1
Indexable Yes
Is Columnset No
Is Sparse No

Structured Query Language (SQL)

m

29 CREATE TABLE

3.4 ALTER TABLE

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

To add a column in a table, use the following syntax:

ALTER TABLE table name
ADD column name datatype

To delete a column in a table, use the following syntax (notice that some database systems
don't allow deleting a column):

ALTER TABLE table name
DROP COLUMN column name

To change the data type of a column in a table, use the following syntax:

ALTER TABLE table name
ALTER COLUMN column name datatype

If we use CREATE TABLE and the table already exists in the table we will get an error
message, so if we combine CREATE TABLE and ALTER TABLE we can create robust database
scripts that gives no errors, as the example shown below:

if not exists (select * from dbo.sysobjects where id = object id(N'[CUSTOMER]') and
OBJECTPROPERTY (id, N'IsUserTable') = 1)
CREATE TABLE CUSTOMER
(
CustomerId int PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

if exists(select * from dbo.syscolumns where id = object id(N'[CUSTOMER]') and
OBJECTPROPERTY (id, N'IsUserTable') = 1 and name = 'CustomerId')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerId int

Else

ALTER TABLE CUSTOMER ADD CustomerId int

GO

if exists(select * from dbo.syscolumns where id = object id(N'[CUSTOMER]') and
OBJECTPROPERTY (id, N'IsUserTable') = 1 and name = 'CustomerNumber')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerNumber int

Structured Query Language (SQL)

30 CREATE TABLE

Else
ALTER TABLE CUSTOMER ADD CustomerNumber int

GO

Structured Query Language (SQL)

4INSERT INTO

The INSERT INTO statement is used to insert a new row in a table.
It is possible to write the INSERT INTO statement in two forms.

The first form doesn't specify the column names where the data will be inserted, only their
values:

INSERT INTO table name
VALUES (valuel, wvalue2, value3,...)

Example:

INSERT INTO CUSTOMER VALUES ('1000', 'Smith', 'John', 12,
'California', '11111111")

The second form specifies both the column names and the values to be inserted:

INSERT INTO table name (columnl, column2, column3,...)
VALUES (valuel, value2, value3,...)

This form is recommended!

Example:

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName, AreaCode,
Address, Phone)
VALUES ('1000', 'Smith', 'John', 12, 'California', '11111111")

Insert Data Only in Specified Columns:

It is also possible to only add data in specific columns.

Example:

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName)
VALUES ('1000', 'Smith', 'John')

Note! You need at least to include all columns that cannot be NULL.

We remember the table definition for the CUSTOMER table:

31

32 INSERT INTO

Column Name Data Type Allow Mulls

»Z Customerld Fint]
CustomerMumber int]
LastMame varchar{50)]
FirstMame varchar{50)]
AreaCode int
Address varchar{50)
Phone varchar(20)

]

i.e., we need to include at least “CustomerNumber”, “LastName” and “FirstName”.
“Customerld” is set to “identity(1,1)” and therefore values for this column are generated by
the system.

Insert Data in the Designer Tools:

When you have created the tables, you can easily insert data into them using the designer
tools. Right-click on the specific table and select “Edit Top 200 Rows”:

= [Tables
[# [System Tables
[+ [FileTables
@ = dbo.AUTHOR
@ = dbo.BOOK
= dbo.BOOK_LIBRARY
@ = dbo.CATEGORY
@ = dbo.CHAPTER
® 3
@ [dbo.LIBRARY New Table...
@ [dbo.LOAN Design
O dbo.PUBLISHER Select Top 1000 Rows
@ = dbo.RATING

. Edit Top 200 Rows
® [Views :
@ 3 Synonyms Script Table as >
@ 4 Programmability View Dependencies

Then you can enter data in a table format, similar to, e.g., MS Excel:

PC88235\DEVELOP...- dbo.CUSTOMER X gelJEadstilIgeelH

‘ Customerld CustomerName CustomerNu... Address Phone PostCode PostAddress EMail Country
»] Bill Clinton 1000 NULL NULL NULL NULL NULL NULL
2 Jens Stoltenberg 1001 NULL NULL NULL NULL NULL NULL
3 Barak Obama 1002 NULL NULL NULL NULL NULL NULL
* NULL NULL NULL NULL NULL NULL NULL NULL NULL

Structured Query Language (SQL)

SUPDATE

The UPDATE statement is used to update existing records in a table.

The syntax is as follows:

UPDATE table name
SET columnl=value, column2=value2,...
WHERE some column=some value

Note! Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which

record or records that should be updated. If you omit the WHERE clause, all records will be
updated!

Example:

update CUSTOMER set AreaCode=46 where CustomerId=2

Before update:

Customerld _______ CustomerMumber LastName FirstName AreaCode Address Phone
1 i1 £ 1000 Smith John Calfornia 11111111
2 2 1001 Jackson Smith London 22222222
3 3 1002 Johnsen John London 33333333
After update:

Customerld = CustomerMumber LastName = FirstName AreaCode Address Phone

1 i1 : 1000 Smith John 1 Califomia 11111111
2 2 1001 Jackson Smith @ London 22222222
3 3 1002 Johnsen John London 33333333

If you don’t include the WHERE clause the result becomes:

CustomerNumber LastName = FirstName
1000 Smith John
1001 Jackson Smith
1002 Johnsen John

Address Phone
California 11111111
London 22222222
London 33333333

- So make sure to include the WHERE clause when using the UPDATE command!

33

34

UPDATE

Update Data in the Designer Tools:

The same way you insert data you can also update the data. Right-click on the specific table
and select “Edit Top 200 Rows”:

=

FEEEEEREEEEE®

Tables
[System Tables
|1 FileTables
=] dbo.AUTHOR
=] dbo.BOOK
=] dbo.BOOK_LIBRARY
=] dbo.CATEGORY

=] dbo.CHAPTER

2
=] dbo.LIBRARY

=] dbo.LOAN
=] dbo.PUBLISHER
= dbo.RATING

@ 4 Views
[Synonyms

[Programmability

Then you can change your data:

New Table...

Design

Select Top 1000 Rows
Edit Top 200 Rows
Script Table as

View Dependencies

PC88235\DEVELOP...- dbo.CUSTOMER X gelJEadstilIgeelH

Customerld CustomerName CustomerNu... Address Phone PostCode PostAddress EMail Country
»] Bill Clinton 1000 NULL NULL NULL NULL NULL NULL
2 Jens Stoltenberg 1001 NULL NULL NULL NULL NULL NULL
3 Barak Obama 1002 NULL NULL NULL NULL NULL NULL
* NULL NULL NULL NULL NULL NULL NULL NULL NULL

Structured Query Language (SQL)

6DELETE

The DELETE statement is used to delete rows in a table.

Syntax:

DELETE FROM table name
WHERE some column=some value

Note! Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which
record or records that should be deleted. If you omit the WHERE clause, all records will be
deleted!

Example:

delete from CUSTOMER where CustomerId=2

Before delete:

Customerld 'CustomerNumber LastName FirstName @ AreaCode Address Phone

1 Smith John 12 California 11111111
2 Jackson Smith 45 London 22222222
3 1002 Johnsen John 32 London 33333333

After delete:

Customerld = CustomerMumber LastName = FirstName AreaCode Address Phone

' - 1000 Smth John 12 Calfomia 11111111

...................................

2 3 1002 Johnsen John 32 London 33333333

Delete All Rows:

It is possible to delete all rows in a table without deleting the table. This means that the
table structure, attributes, and indexes will be intact:

DELETE FROM table name

Note! Make sure to do this only when you really mean it! You cannot UNDO this statement!

Delete Data in the Designer Tools:

You delete data in the designer by right-click on the row and select “Delete”:

35

36 DELETE

PC88235\DEVELOP...- dbo.CUSTOMER X ReljHad ST g m 1

Customerld CustomerName CustomerNu... Address Phone PostCode
1 Bill Clinton 1000 NULL NULL NULL
2 Jens Stoltenberg 1001 NULL NULL NULL
[—)— — — 1002 NULL NULL NULL
* cri-R NULL NULL NULL NULL
#& Cut Ctrl+X
=32 Copy Ctrl+C
4 Paste Ctrl+V
X Delete Del
Pane »
‘E Clear Results
(2 Properties Alt+Enter

Structured Query Language (SQL)

/SELECT

The SELECT statement is probably the most used SQL command. The SELECT statement is
used for retrieving rows from the database and enables the selection of one or many rows or
columns from one or many tables in the database.

We will use the CUSTOMER table as an example.

The CUSTOMER table has the following columns:

Column Name Data Type Allow Nulls
»7 | Customerld int O
CustomerMumber varchar(20)]
LastMame varchar({50)]
FirsthName varchar({50)]
AreaCode int
Address varchar({50)
Phone varchar(20)

The CUSTOMER table contains the following data:

Customerld = CustomerNumber = LastName = FirstName AreaCode = Address Phone

1 i1 1000 Smith John 12 California 11111111

2 2 1001 Jackson Smith 45 London 22222222

3 3 1002 Johnsen John 32 London 33333333
Example:

select * from CUSTOMER

Customerld = CustomerMumber LastName FirstName AreaCode Address Phone

1 : Smith John 12 California 11111111
2 2 1001 Jackson Smith 45 London 22222222
3 3 1002 Johnsen John 32 London 33333333

This simple example gets all the data in the table CUSTOMER. The symbol “*” is used when
you want to get all the columns in the table.

37

38 SELECT

If you only want a few columns, you may specify the names of the columns you want to
retrieve, example:

select CustomerId, LastName, FirstName from CUSTOMER

Customerld LastName = FirstName

1 i1 : Smith John
2 2 Jackson Smith
3 3 Johnsen John

So in the simplest form we can use the SELECT statement as follows:

select <column names> from <table names>

If we want all columns, we use the symbol “*”
Note! SQL is not case sensitive. SELECT is the same as select.

The full syntax of the SELECT statement is complex, but the main clauses can be summarized
as:

SELECT
[ALL | DISTINCT]
[TOP (expression) [PERCENT] [WITH TIES]]

select list [INTO new table]

FROM table source] [WHERE search condition]
[GROUP BY group by expression]
[HAVING search condition]
[ORDER BY order expression [ASC | DESC]]

It seems complex, but we will take the different parts step by step in the next sections.

Select Data in the Designer Tools:

Right-click on a table and select “Select Top 1000 Rows”:

3 Constraints
3 Triggers
3 Indexes
[Statistics

=) [Tables

@ [System Tables

[FileTables
=1 dbo.AUTHOR
=1 dbo.BOOK
=1 dbo.BOOK_LIBRARY
=1 dbo.CATEGORY
=1 dbo.CHAPTER
£ ioo CUsTOMER
= dbo.LIBRARY New Table...
= dbo.LOAN Design

2 dbo.PUBLISHER Select Top 1000 Rows
@ 3 dbo.RATING Edit Top 200 Rows

& 3 Views

| £ Synonyms Script Table as 4

] 3 Programmability

) [Service Broker

., Full-Tevt indev

HEEEHB®

[+

& & ®

B &

@ [

=

View Dependencies

+

The following will appear:

Structured Query Language (SQL)

39 SELECT

SQLQueyLsal - PC. 88235\hansh (54)
J*****x% Script for SelectTopNRows command from SSMS ****x*/
FISELECT TOP 1000 [CustomerId]
, [CustomerName]
» [CustomerNumber]
,[Address]
» [Phone]
, [PostCode]
, [PostAddress]
, [EMail]
,» [Country]
FROM [LIBRARYSYSTEM].[dbo].[CUSTOMER]

0W0% ~ ¢

»
: Results UJ Messages

CustomerName CustomerNumber ~ Address Phone PostCode PostAddress EMail

Country
1 1000 NULL NULL NULL NULL NULL NULL
2 Jens Stoltenberg 1001 NULL NULL NULL NULL NULL NULL
3 3 Barak Obama 1002 NULL NULL NULL NULL NULL NULL

A Select query is automatically created for you which you can edit if you want to.

7.1 The ORDER BY Keyword

If you want the data to appear in a specific order you need to use the “order by” keyword.

Example:

select * from CUSTOMER order by LastName

_Customerld .CustomerNumber LastName @ FirstName AreaCode Address Phone

1 i 1001 Jackson Smith 45 London 22222222
2 1002 Johnsen John 32 London 33333333
3 1 1000 Smith John 12 California 11111111

You may also sort by several columns, e.g. like this:

select * from CUSTOMER order by Address, LastName

Customerld .CustomerNumber LastName = FirstName AreaCode Address Phone

1 1 1000 Smith John 12 California 11111111
2 2 1001 Jackson Smith 45 London 22222222
3 3 1002 Johnsen John 32 London 33333333

If you use the “order by” keyword, the default order is ascending (“asc”). If you want the
order to be opposite, i.e., descending, then you need to use the “desc” keyword.

Structured Query Language (SQL)

40 SELECT

select * from CUSTOMER order by LastName desc

Customerld .CustomerNumber LastName @ FirstName AreaCode Addess Phone

L Smith John 12 California 11111111
2 3 1002 Johnsen John 32 London 33333333
3 2 1001 Jackson Smith 45 London 22222222

7.2SELECT DISTINCT

In a table, some of the columns may contain duplicate values. This is not a problem,
however, sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

The syntax is as follows:

select distinct <column names> from <table names>

Example:

select distinct FirstName from CUSTOMER

FirstName
1 {dehn
2 Smith

7.3The WHERE Clause

The WHERE clause is used to extract only those records that fulfill a specified criterion.

The syntax is as follows:

select <column names>
from <table name>
where <column name> operator value

Example:

select * from CUSTOMER where CustomerNumber='1001"

Customerld = CustomerMumber — LastName = FirstName AreaCode Address Phone

' : 1001 Jackson Smith 45 London 22222222

..................................

Structured Query Language (SQL)

41 SELECT

Note! SQL uses single quotes around text values, as shown in the example above.

7.3.1 Operators

With the WHERE clause, the following operators can be used:

Operator Description

|
|
|

<= Less than or equal
m Search for a pattern

Eei

Examples:

select * from CUSTOMER where AreaCode>30

' Customerld = CustomerMumber — LastName @ FirstName AreaCode Address | Phone |
1 i2 © 1001 Jackson Smith 45 London 22222222
2 3 1002 Johnsen John 32 London 33333333

7.3.2 LIKE Operator

The LIKE operator is used to search for a specified pattern in a column.

Syntax:

SELECT column name (s)
FROM table name
WHERE column name LIKE pattern

Example:

select * from CUSTOMER where LastName like 'J%'

| Customerld = CustomerNumber = LastName = FirstName = AreaCode Address Phone |
1 |2 100 Jackson Smith 45 London 22222222
2 3 1002 Johnsen John 32 London 33333333

Note! The "%" sign can be used to define wildcards (missing letters in the pattern) both
before and after the pattern.

Structured Query Language (SQL)

42

SELECT

select * from CUSTOMER where LastName like '%a$%'

Customerld = CustomerMumber — LastName = FirstName AreaCode Address Phone
i Jackson Smith 45 London 22222222

You may also combine with the NOT keyword, example:

select * from CUSTOMER where LastName not like '%a%'

Customerld CustomerMumber LastMame FirstName @ AreaCode Address Phone
i 1000 Smith John 12 California 11111111

2 3 1002 Johnsen John 32 London 33333333

7.3.3 IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

Syntax:

SELECT column_ name (s)
FROM table name
WHERE column name IN (valuel,valueZ,...)

7.3.4 BETWEEN Operator

The BETWEEN operator selects a range of data between two values. The values can be

numbers, text, or dates.

Syntax:

SELECT column name (s)
FROM table name

WHERE column name
BETWEEN valuel AND value2

7.4 Wildcards

SQL wildcards can substitute for one or more characters when searching for data in a

database.
Note! SQL wildcards must be used with the SQL LIKE operator.

With SQL, the following wildcards can be used:

Structured Query Language (SQL)

43 SELECT

Wildcard Description

% A substitute for zero or more characters
_ A substitute for exactly one character
[charlist] Any single character in charlist
[Acharlist] Any single character not in charlist

or

['charlist]

Examples:

SELECT * FROM CUSTOMER WHERE LastName LIKE 'J cks n'

Customerld = CustomerMumber — LastName = FirstName AreaCode Address Phone

1001 Jackson Smith 45 London 22222222

..................................

SELECT * FROM CUSTOMER WHERE CustomerNumber LIKE '[10]%'

Customerld 'CustomerNumber LastMName FirstName @ AreaCode Address Phone

1 Smith John 12 California 11111111
2 2 1001 Jackson Smith 45 London 22222222
3 3 1002 Johnsen John 32 London 33333333

7.5AND & OR Operators

The AND operator displays a record if both the first condition and the second condition is
true.

The OR operator displays a record if either the first condition or the second condition is true.

Examples:

select * from CUSTOMER where LastName='Smith' and FirstName='John'

Customerld = CustomerMumber = LastName FirstName AreaCode Address Phone

1 i1 ;1000 Smith John 12 California 11111111

..................................

select * from CUSTOMER where LastName='Smith' or FirstName='John'

Customerld = CustomerMNumber LastName FirstName AreaCode Addess Phone
1 1 1000 Smith John 12 California 11111111
2 3 1002 Johnsen John 32 London 33333333

Structured Query Language (SQL)

44 SELECT

Combining AND & OR:

You can also combine AND and OR (use parenthesis to form complex expressions).

Example:

select * from CUSTOMER
where LastName='Smith' and (FirstName='John' or FirstName='Smith')

Customerld = CustomerMumber — LastName FirstName AreaCode Address Phone

LI - 1000 Smith John 12 California 11111111

..................................

7.6 SELECT TOP Clause

The TOP clause is used to specify the number of records to return.

The TOP clause can be very useful on large tables with thousands of records. Returning a
large number of records can impact on performance.

Syntax:

SELECT TOP number |percent column name (s)
FROM table name

Examples:

select TOP 1 * from CUSTOMER

Customerld CustomerMumber LastName FirstName AreaCode Addiess Phone
1 1 1000 Smith John 12 California 11111111

You can also specify in percent:

select TOP 60 percent * from CUSTOMER

Customerld CustomerMumber ~ LastName = FirstName AreaCode Address Phone
1 1 1000 Smith John 12 California 11111111
2 2 1001 Jackson Smith 45 London 22222222

This is very useful for large tables with thousands of records

Structured Query Language (SQL)

45 SELECT

7.7 Alias

You can give a table or a column another name by using an alias. This can be a good thing to
do if you have very long or complex table names or column names.

An alias name could be anything, but usually it is short.

SQL Alias Syntax for Tables:

SELECT column_ name (s)
FROM table name
AS alias name

SQL Alias Syntax for Columns:

SELECT column name AS alias name
FROM table name

7.8Joins

SQL joins are used to query data from two or more tables, based on a relationship between
certain columns in these tables.

Structured Query Language (SQL)

46 SELECT

Get Data from multiple tables in a
single Query using Joins
Example: COURSE
Column Name Data Type Allow Nulls
SCHOOL ¥ Courseld int
Column Name Data Type Allow Nulls CourseName varchar(50)
@ Schoolld int g Schoolld int
SchoolName varchar(50) Description varchar(1000) v
Description varchar(1000) v
Address v
Phone varchar(50) v
PostCode varchar(50) v
PostAddress varchar(50) v
S e | e Ct ___School Name CourseName
SC h O O | N a m e, ; ?:r::ir{l: Implementation
CO u rse N a m e 3 Systems and Control Laboratory
from You link Primary Keys and Foreign Keys together
SCHOOL , I :
inner join COURSE on SCHOOL.Schoolld = COURSE.Schoolld

7.8.1 Different SQL JOINs

Before we continue with examples, we will list the types of JOIN you can use, and the
differences between them.

e JOIN: Return rows when there is at least one match in both tables

e LEFT JOIN: Return all rows from the left table, even if there are no matches in the
right table

e RIGHT JOIN: Return all rows from the right table, even if there are no matches in the
left table

e FULLJOIN: Return rows when there is a match in one of the tables

Example:
Given 2 tables:

e SCHOOL
e CLASS

Structured Query Language (SQL)

47 SELECT
The diagram is shown below:
CLASS
SCHOOL Column Name Data Type Allow Mulls
Column Name Data Type Allow Nulls % Classid int O
% Schoolld int O Schoolld int O
SchoolName varchar(50) O Classhame varchar(S0) O
Description varchar(1000) Description varchar(1000)
Address varchar(50) O
Phone varchar(S0)
PostCode varchar(50)
Postaddress varchar(50)
O]

We want to get the following information using a query:

SchoolName

ClassName

In order to get information from more than one table we need to use the JOIN. The JOIN is
used to join the primary key in one table with the foreign key in another table.

sele

ct

SCHOOL.SchoolName,
CLASS.ClassName

from
SCHO

INNER JOIN CLASS ON SCHOOL.SchoolId

OL

CLASS.SchoolId

[= o B § BN SR R R o R

SchoolName

......................................

SCE1

ClassName

SCE2

PT1
PT2
Al
A2

Structured Query Language (SQL)

3SQL Scripts

A SQL script is a collection of SQL statements that you can execute in one operation. You can
use any kind of SQL commands, such as insert, select, delete, update, etc. In addition you
can define and use variables, and you may also use program flow like If-Else, etc. You may
also add comments to make the script easier to read and understand.

8.1 Using Comments

Using comments in you SQL script is important to make the script easier to read and
understand.

In SQL we can use 2 different kinds of comments:

e Single-line comment
e Multiple-line comment

8.1.1 Single-line comment

We can comment one line at the time using “--” before the text you want to comment out.

Syntax:

-- text of comment

8.1.2 Multiple-line comment

We can comment several line using “/*” in the start of the comment and “*/” in the end of
the comment.

Syntax:

/*
text of comment
text of comment

*/

48

49 SQL Scripts

8.2 Variables

The ability to using variables in SQL is a powerful feature. You need to use the keyword
DECLARE when you want to define the variables. Local variables must have the the symbol
“@” as a prefix. You also need to specify a data type for your variable (int, varchar(x), etc.).

Syntax for declaring variables:

declare Qlocal variable data type

If you have more than one variable you want to declare:

declare
@myvariablel data type,
@myvariable2 data type,

When you want to assign values to the variable, you must use either a SET or a SELECT
statement.

Example:

declare @myvariable int

set @myvariable=4

If you want to see the value for a variable, you can e.g., use the PRINT command like this:

declare @myvariable int
set @myvariable=4

print @myvariable

The following will be shown in SQL Server:

3 Messages
4

Assigning variables with a value from a SELECT statement is very useful.

Structured Query Language (SQL)

50 SQL Scripts

We use the CUSTOMER table as an example:

Customerld = CustomerMumber LastName FirstName AreaCode Address Phone

1 : Smith John 12 California 11111111
2 2 1001 Jackson Smith 45 London 22222222
3 3 1002 Johnsen John 32 London 33333333

You can assign a value to the variable from a select statement like this:

declare @mylastname varchar (50)

select @mylastname=LastName from CUSTOMER where CustomerId=2
print @mylastname

'] Messages

Jackson

You can also use a variable in the WHERE clause LIKE, e.g., this:

declare @find wvarchar (30)
set @find = 'J%"'

select * from CUSTOMER
where LastName LIKE Q@find

Customerld = CustomerNumber LastMame FirstName = AreaCode Address Phone
‘ Jackson Smith 45 London 22222222
Johnsen John 32 London 33333333

8.3 Built-in Global Variables

SQL have lots of built-in variables that are very useful to use in queries and scripts.

8.3.1 @@IDENTITY

After an INSERT, SELECT INTO, or bulk copy statement is completed, @ @IDENTITY contains
the last identity value that is generated by the statement. If the statement did not affect any
tables with identity columns, @ @IDENTITY returns NULL. If multiple rows are inserted,
generating multiple identity values, @ @IDENTITY returns the last identity value generated.

Example:

Given to tables; SCHOOL and COURSE:

Structured Query Language (SQL)

51 SQL Scripts

SCHOOL table: COURSE table:

SchoolName = Description Address Phone PostCode PostAddress Courseld = CourseName = Schoolld = Description

1 NULL NULL NULL NULL NULL 1 | SCE2008 1 NULL
2 NULL NULL NULL NULL NULL P SCET1108 1 NULL
3 3 SCE4206 1 NULL
4 4 SCE4106 1 NULL

We want to insert a new School into the SCHOOL table and we want to insert 2 new Courses

in the COURSE table that belong to the School we insert. To find the “Schoolld” we can use
the @@IDENTITY variable:

declare @SchoolId int

—-— Insert Data into SCHOOL table
insert into SCHOOL (SchoolName) values ('MIT')

select @SchoollId = @RIDENTITY

-— Insert Courses for the specific School above in the COURSE table
insert into COURSE (SchoolId,CourseName) values (@SchoolId, 'MIT-
101")

insert into COURSE (SchoolId,CourseName) values (@SchoolId, 'MIT-
201")

The result becomes:

SCHOOL table: COURSE table:

""Schoolld SchoolName = Description = Address Phone | PostCode Post4ddress Courseld = CourseName = Schoolld Description

1 NULL NULL NULL NULL NULL 1 SCE2006 1 NULL
2 NTHNU NULL NULL NULL _NULL NULL 2 5 SCE1106 1 NULL
3 r 16 MIT NULL NULL NULL NULL NULLI
3 3 SCE4206 1 NULL
4 4 SCE4106 1 NULL
5 [s MIT-101 1% NULL
6 6 MIT-201 16 NULL

8.4 Flow Control

As with other programming languages you can use different kind of flow control, such as IF-
ELSE, WHILE, etc, which is very useful.

8.4.1 |F—-ELSE

The IF-ELSE is very useful. Below we see an example:

declare (@customerNumber int

Structured Query Language (SQL)

52 SQL Scripts

select @customerNumber=CustomerNumber from CUSTOMER
where CustomerId=2

if QcustomerNumber > 1000

print 'The Customer Number is larger than 1000'
else

print 'The Customer Number is not larger than 1000’

_‘j Messages
The Customer Number is larger than 1000

BEGIN...END:

If more than one line of code is to be executed within an IF sentence you need to use
BEGIN...END.

Example:

select @customerNumber=CustomerNumber from CUSTOMER where
CustomerId=2

if QcustomerNumber > 1000
begin
print 'The Customer Number is larger than 1000'
update CUSTOMER set AreaCode=46 where CustomerId=2
end
else
print 'The Customer Number is not larger than 1000’

8.4.2 WHILE

We can also use WHILE, which is known from other programming languages.
Example:

We are using the CUSTOMER table:

Customerld = CustomerNumber = LastName FirstName AreaCode Address Phone

1 § 1 E 1000 Smith John 12 California 11111111
2 2 1001 Jackson Smith 45 London 22222222
Z 3 1002 Johnsen John 32 London 33333333

and the following query:

while (select AreaCode from CUSTOMER where CustomerId=1) < 20
begin
update CUSTOMER set AreaCode = AreaCode + 1

Structured Query Language (SQL)

53 SQL Scripts

end

select * from CUSTOMER

Customerld = CustomerMumber LastName FirstName J&megCode Address Phone
1 1 : 1000 Smith John 6 California 11111111

N > 0 | 1001 Jackson Smith London 22222222

3 3 1002 Johnsen John 40 London 33333333

As you can see the code inside the WHILE loop is executed as long as “AreaCode” for

Customerld=1 is less than 20. For each iteration is the “AreaCode” for that customer
incremented with 1.

8.4.3 CASE

The CASE statement evaluates a list of conditions and returns one of multiple possible result
expressions.

Example:

We have a “GRADE"” table that contains the grades for each student in different courses:

select GradeId, StudentId, Courseld, Grade from GRADE

Gradeld = Studentld Courseld Grade

L5 B CR R T LN
W oW W =
M W o

In the “GRADE"” table is the grades stored as numbers, but since the students get grades with
the letters A..F (A=5, B=4, C=3, D=2, E=1, F=0), we want to convert the values in the table
into letters using a CASE statement:

select

Gradeld,

StudentId,

CourselId,

case Grade
when 5 then 'A'
when 4 then 'B'
when 3 then 'C'
when 2 then 'D'
when 1 then 'E'
when 0 then 'F'
else '-'

end as Grade

from

Structured Query Language (SQL)

54 SQL Scripts

GRADE

Gradeld Studentld Courseld Grade
: i1 1 B

L5 2 B CRL R T LN
— WM

A
F
C
A

[TR N T R T

8.4.4 CURSOR

In advances scripts, CURSORs may be very useful. A CURSOR works like an advanced WHILE
loop which we use to iterate through the records in one or more tables.

CURSORS are used mainly in stored procedures, triggers, and SQL scripts.
Example:

We use the CUSTOMER table as an example:

Customerld = CustomerMumber = LastName FirstName AreaCode Address |Phone
1 1 - 1000 Smith John 20 California | 11111111
 F 1001 Jackson Smith 53 London | 2222
3 3 1002 Johnsen John 40 London 33333333
4 B 1003 Obama Barak 51 Nevada | 4444

We will create a CURSOR that iterate through all the records in the CUSTOMER table and
check if the Phone number consists of 8 digits, if not the script will replace the invalid Phone
number with the text “Phone number is not valid”.

Here is the SQL Script using a CURSOR:

DECLARE
@CustomerId int,
@phone wvarchar (50)

DECLARE db cursor CURSOR
FOR SELECT CustomerId from CUSTOMER

OPEN db_ cursor
FETCH NEXT FROM db cursor INTO @CustomerId

WHILE Q@FETCH_STATUS = O
BEGIN

select @phone=Phone from CUSTOMER where CustomerId=@CustomerId

if LEN (@phone) < 8

Structured Query Language (SQL)

55 SQL Scripts

update CUSTOMER set Phone='Phone number is not valid'
where CustomerId=@CustomerId

FETCH NEXT FROM db cursor INTO @CustomerId
END

CLOSE db cursor
DEALLOCATE db cursor

The CUSTOMER table becomes:

CustomerMumber LastName = FirstName AreaCode Address |Phone

1 1000 Smith John 20 California | 11111111
2 1001 Jackson Smith 53 London Phone number is not valid
3 3 1002 Johnsen John 40 London 33333333
4 1003 Obama Barak 51 Nevada | Phone number is not valid

Creating and using a CURSOR includes these steps:

e Declare SQL variables to contain the data returned by the cursor. Declare one
variable for each result set column.

e Associate a SQL cursor with a SELECT statement using the DECLARE CURSOR
statement. The DECLARE CURSOR statement also defines the characteristics of the
cursor, such as the cursor name and whether the cursor is read-only or forward-only.

e Use the OPEN statement to execute the SELECT statement and populate the cursor.

e Use the FETCH INTO statement to fetch individual rows and have the data for each
column moved into a specified variable. Other SQL statements can then reference
those variables to access the fetched data values.

e When you are finished with the cursor, use the CLOSE statement. Closing a cursor
frees some resources, such as the cursor's result set and its locks on the current row.
The DEALLOCATE statement completely frees all resources allocated to the cursor,
including the cursor name.

Structured Query Language (SQL)

9Views

Views are virtual table for easier access to data stored in multiple tables.

Create View:
IF EXISTS (SELECT name A View is a “virtual” table that
FROM sysobjects . .
CERE enie = UCeieeeDerea can contain data from multiple
AND type = 'V') tables
DROP VIEW CourseData
GO .
// The Name of the View
CREATE VIEW CourseData
AS
pLECT Ir15|de the View you join the_
SCHOOL. SchoolTd, different tables together using

SCHOOL. SchoolName,
COURSE.CourseId,

COURSE.CourseName,
COURSE.Description

the JOIN operator

FROM
SCHOOL
INNER JOIN COURSE ON SCHOOL.SchoolId = COURSE.SchoolId
GO .

You can Use the View as an

Using the View: ordinary table in Queries :

select * from CourseData

Schoolld SchoolName Courseld CourseName Description
1 1 TUC 1 Industrial IT The best course ever
2 1 TUC 2 Control with Implementation Control Theory
3 1 TUC 3 Systems and Control Laboratory Practical Lav course

Syntax for creating a View:

CREATE VIEW <ViewName>
AS

... but it might be easier to do it in the graphical view designer that are built into SQL
Management Studio.

Syntax for using a View:

select * from <MyView> where ..

As shown above, we use a VIEW just like we use an ordinary table.

56

57 Views

Example:

We use the SCHOOL and CLASS tables as an example for our View. We want to create a View
that lists all the existing schools and the belonging classes.

CLASS
SCHOOL Column Name Data Type Allow Mulls
Column Name Data Type Allow Mulls % Classid int O
® Schoolld int O D Schoolld int O
SchoolName varchar(50) O Classhame varchar(S0) O
Description varchar(1000) Description varchar(1000)
Address varchar(50) O
Phone varchar{S0)
PostCode varchar(50)
Postaddress varchar{S0)
O]

We create the VIEW using the CREATE VIEW command:

CREATE VIEW SchoolView
AS

SELECT

SCHOOL.SchoolName,

CLASS.ClassName

FROM

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

Note! In order to get information from more than one table, we need to link the tables
together using a JOIN.

9.1 Using the Graphical Designer

We create the same View using the graphical designer in SQL Server Management Studio:

Structured Query Language (SQL)

58 Views

Creating Views using the Editor

Object Explorer 3
S0 m CLASS _|
Comnect~ | 33) m ¥ 2] & @ — 1% (Al Columns)
. . . * (All Columns) Classid
=6 [schoolid
= (L3 Databases %;:Wme Select necessary
ot
@ [System Databases m povhank I columns
* U INVOICING
2] SCADA .
- g HoOL Graphical Interface where you can select columns you need
[_J Database Diagrams <
[Table: Colunn Alias Table Output | Sort Type Sort Order Filter or... or... or..
®Ca 1 » | Schoolame SCHOOL =
@ [0 Synon r" o I Classhame cLass
& [Progra Filt » g
@ [Service e =
@ [Securiy Start PowerShell =
* U TEST ISELECT dbo.5CHOOL.SchoolName, dbo.CLASS. ClassName
= - FROM dbo.SCHOOL INNER JOIN The Code is automatically
[Security Reports > dbo.CLASS ON dbo.SCHOOL.Schoolld = dbo.CLASS. Schoolld o= generated
[Server Objects
@ [Replication Refresh
[Management T =
> {TL(SCE1
T @@ e o +— Show the results
N Tuc PT1
Tables | views | Functions | Synonyms - ra
| = 4t of6 | b > Cellis Read Only.
COURSE
GRADE

STUDENT
STUDENT_COURSE

TEACHER
TEACHER_COURSE

Add necessary tables 'schoolvien] |

Enter a name for the view:

[refresh | [_add [cose |

Save the View

Step 1: Right-click on the View node and select “New View...”:

Connect~ 43 %) w F 2] &
B B . .

= [Databases
[System Databases
U INVOICING

| J SCADA
= | J SCHOOL
[Database Diagrams
[Tables
3
Ca Synon~| MNew Yiew. .. "
[Progra)
[Service Fiker i
L Securit Start PowerShell
| J TEST
[Security Reports »
[Server Objects
[Replication Refresh

[Management

Step 2: Add necessary tables:

Structured Query Language (SQL)

59 Views

Add Table

Tables | views | Functions || Synonyms |
COURSE

GRADE

STUDENT

STUDENT_COURSE

TEACHER

TEACHER _COURSE

[Refresh] l Add] [Close

Step 3: Add Columns, etc.

= CIASS _|
ENSCHOOL
| |* (all Columns)
L_|* {all Columns)) [|Classid
DM @:C(%:no DSChOOlId
SchooIName ¥ Classhame Select necessary
Description Description * columns
gnddress LI
&
Alias Table Output Sort Type Sort Order Filter Or... (700 Or..
» SchoolName SCHOOL
ClassMame CLASS
=
(=]
w1
<
SELECT dbo.SCHOOL.SchoolMame, dbo.CLASS. ClassMame
FROM dbo,SCHOOL INNER JOIN The Code is automatically
dbo.CLASS ON dbo.SCHOOL. Schoolld = dbo.CLASS. Schoolld *_ generated
SchoolName ClassMame
> TuC SCE1
e . 4 Show the results
TUC PT1
M 4 |1 ofe6 | b bl b ©) Cellis Read Only.

Step 4: Save the VIEW:

Enter a name for the view:
|School'¢iew| l

l OK ,][Cancel]

Structured Query Language (SQL)

60 Views

Step 5: Use the VIEW in a query:

select * from SchoolView

SchoolMame = ClassName
’ | SCE1
SCE2
PT1
PT2
NTNU Al
NTNU A2

(=2 B 3 BN R R B O R

Structured Query Language (SQL)

10 Stored Procedures

A Stored Procedure is a precompiled collection of SQL statements. In a stored procedure you
can use if sentence, declare variables, etc.

Create Stored Procedure:

PSS BELECT name A Stored Procedure is like Method in C#
sysobjects T .)
WHERE name = 'StudentGrade' - it is a piece of code with SQL
AND type ='P' .pe
DROP pROCEDUREV‘S’tudenSG,ade commands that do a specific task—and
06 you reuse it

CREATE PROCEDURE StudentGrade
@Student varchar(50),
@Course varchar(10), Procedure Name
@Grade VarChar(l) \
Input Arguments

AS

DECLARE
@Studentld int, <€ Internal/Local Variables

@Courseld int Note! Each variable starts with @

select Studentld from STUDENT where StudentName = @Student

select Courseld from COURSE where CourseName = @Course

SQL Code (the “body” of the

insert into GRADE (Studentld, Courseld, Grade) Stored Procedure)

values (@Studentld, @Courseld, @Grade)
GO

Using the Stored Procedure:
execute StudentGrade 'John Wayne', 'SCE2006', 'B'

Syntax for creating a Stored Procedure:

CREATE PROCEDURE <ProcedureName>
@<Parameterl> <datatype>

declare
@myVariable <datatype>
. Create your Code here

Note! You need to use the symbol “@” before variable names.

Syntax for using a Stored Procedure:

EXECUTE <ProcedureName (..) >

Example:

61

62 Stored Procedures

We use the SCHOOL and CLASS tables as an example for our Stored Procedure. We want to
create a Stored Procedure that lists all the existing schools and the belonging classes.

CLASS
SCHOOL Column Name Data Type Allow Mulls
Column Name Data Type Allows Nulls ¢ Classid int O
% Schoolld int O RO Schoolld int O
Schoolhame varchar(50) O ClassName varchar(S0) O
Description varchar(1000) Description varchar(1000)
Address varchar(50) O
Phone varchar(50)
PostCode varchar{S0)
PostAddress varchar(50)
O

We create the Stored Procedure as follows:

CREATE PROCEDURE GetAllSchoolClasses
AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoollId = CLASS.SchoolId
order by SchoolName, ClassName

When we have created the Stored Procedure we can run (or execute) the Stored procedure
using the execute command like this:

execute GetAllSchoolClasses

SchoolName = ClassName

1 i NTNU Y

R T — -

3 TUC PT1
4 TUC PT2
5 TUC SCE1
B TUC SCE2

We can also create a Store Procedure with input parameters.

Example:

Structured Query Language (SQL)

63 Stored Procedures

We use the same tables in this example (SCHOOL and CLASS) but now we want to list all
classes for a specific school.

The Stored Procedure becomes:

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName wvarchar (50)
AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.Schoolld = CLASS.SchoolId
where SchoolName=@SchoolName

order by ClassName

We run (or execute) the Stored Procedure:

execute GetSpecificSchoolClasses 'TUC'

SchoolName = ClassName

1 {TUC i PT1
T - o1
3 TucC SCE1
4 TucC SCE2

or:

execute GetSpecificSchoolClasses 'NTNU'

SchoolName = ClassName

1 i NTNU F Al

......................................

When we try to create a Stored Procedure that already exists we get the following error
message:

There is already an object named 'GetSpecificSchoolClasses' in the database.

Then we first need to delete (or DROP) the old Stored Procedure before we can recreate it
again.

We can do this manually in the Management Studio in SQL like this:

Structured Query Language (SQL)

64 Stored Procedures

[= [Programmability
[= [Stored Procedures
[System Stored Procedures
[dbo.GetallSchoolClasses

el dbo. GetSpecificSchoolClassee

[dbo.StudentGrade
[+ |_J Functions
[* [Database Triggers
[+ [Assemblies
[+ [Types
[Rules
[Defaults
[# [Service Broker
[+ [Security
| J TEST
Security
Server Objects
Replication

Mew Stored Procedure...

Modify

Execute Stored Procedure. ..

Script Stored Procedure as
View Dependencies

Palicies

Facets
Start PowerShell

Reports

Management
Rename

| Delete

A better solution is to add code for this in our script, like this:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = GetSpecificSchoolClasses '
AND type = 'P'")
DROP PROCEDURE GetSpecificSchoolClasses
GO

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName varchar (50)
AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoollId = CLASS.SchoolId
where SchoolName=@SchoolName

order by ClassName

So we use CREATE PROCEDURE to create a Stored Procedure and we use DROP PROCEDURE
to delete a Stored Procedure.

10.1 NOCOUNT ON/NOCOUNT OFF

In advanced Stored Procedures and Script, performance is very important. Using SET
NOCOUNT ON and SET NOCOUNT OFF makes the Stored Procedure run faster.

SET NOCOUNT ON stops the message that shows the count of the number of rows affected
by a Transact-SQL statement or stored procedure from being returned as part of the result
set.

Structured Query Language (SQL)

65 Stored Procedures

SET NOCOUNT ON prevents the sending of DONE_IN_PROC messages to the client for each
statement in a stored procedure. For stored procedures that contain several statements that
do not return much actual data, or for procedures that contain Transact-SQL loops, setting
SET NOCOUNT to ON can provide a significant performance boost, because network traffic is
greatly reduced.

Example:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'sp LIMS IMPORT REAGENT'
AND type = 'P'")
DROP PROCEDURE sp LIMS IMPORT REAGENT
GO

CREATE PROCEDURE sp LIMS IMPORT REAGENT
@Name varchar (100),

@LotNumber varchar (100),

@ProductNumber varchar (100),
@Manufacturer varchar (100)

AS
SET NOCOUNT ON

if not exists (SELECT ReagentId FROM LIMS REAGENTS WHERE
[Name] =@Name)
INSERT INTO LIMS REAGENTS ([Name], ProductNumber, Manufacturer)
VALUES (@Name, @ProductNumber, @Manufacturer)
else
UPDATE LIMS REAGENTS SET
[Name] = @Name,
ProductNumber = @ProductNumber,
Manufacturer = @Manufacturer,
WHERE [Name] = @Name

SET NOCOUNT OFF
GO

This Stored Procedure updates a table in the database and in this case you don’t normally
need feedback, sp setting SET NOCOUNT ON at the top in the stored procedure is a good
idea. it is also good practice to SET NOCOUNT OFF at the bottom of the stored procedure.

Structured Query Language (SQL)

11 Functions

With SQL and SQL Server you can use lots of built-in functions or you may create your own
functions. Here we will learn to use some of the most used built-in functions and in addition
we will create our own function.

11.1 Built-in Functions

SQL has many built-in functions for performing calculations on data.

We have 2 categories of functions, namely aggregate functions and scalar functions.
Aggregate functions return a single value, calculated from values in a column, while scalar
functions return a single value, based on the input value.

Aggregate functions - examples:

e AVG() - Returns the average value

e STDEV() - Returns the standard deviation value
e COUNT() - Returns the number of rows

e MAX() - Returns the largest value

e MIN() - Returns the smallest value

e SUM() - Returns the sum

e etc.

Scalar functions - examples:

e UPPER() - Converts a field to upper case

e LOWER() - Converts a field to lower case

e LEN() - Returns the length of a text field

e ROUND() - Rounds a numeric field to the number of decimals specified
e GETDATE() - Returns the current system date and time

e etc.

11.1.1 String Functions

Here are some useful functions used to manipulate with strings in SQL Server:

66

67

Functions

CHAR
CHARINDEX
REPLACE
SUBSTRING
LEN
REVERSE
LEFT

RIGHT
LOWER
UPPER
LTRIM
RTRIM

Read more about these functions in the SQL Server Help.

11.1.2 Date and Time Functions

Here are some useful Date and Time functions in SQL Server:

DATEPART
GETDATE
DATEADD
DATEDIFF
DAY
MONTH
YEAR
ISDATE

Read more about these functions in the SQL Server Help.

11.1.3 Mathematics and Statistics Functions

Here are some useful functions for mathematics and statistics in SQL Server:

COUNT

MIN, MAX
COS, SIN, TAN
SQRT

STDEV

MEAN

AVG

Structured Query Language (SQL)

68 Functions

Read more about these functions in the SQL Server Help.

11.1.4 AVG()

The AVG() function returns the average value of a numeric column.

Syntax:

SELECT AVG (column name) FROM table name

Example:

Given a GRADE table:

Column Name Data Type Allow Nulls
»7 Gradeld int O
StudentId int]
Courseld int]
Grade float]
Comment varchar(1000)

We want to find the average grade for a specific student:

select AVG(Grade) as AvgGrade from GRADE where StudentId=1

AvalGrade

11.1.5 COUNT()

The COUNT() function returns the number of rows that matches a specified criteria.

The COUNT(column_name) function returns the number of values (NULL values will not be
counted) of the specified column:

SELECT COUNT (column name) FROM table name

The COUNT(*) function returns the number of records in a table:

SELECT COUNT (*) FROM table name

Structured Query Language (SQL)

69

Functions

We use the CUSTOMER table as an example:

[Customerld = CustomerNumber = LastMame FirstMame @ AreaCode Address
£ 1000 Smith John 12 California

2 2 1001 Jackson Smith 45 London

3 3 1002 Johnsen John 32 London

Phone

1111111
22222222
33333333

select COUNT (*) as NumbersofCustomers from CUSTOMER

1 i3

{ NumberofCustomers
|

11.1.6 The GROUP BY Statement

Aggregate functions often need an added GROUP BY statement.

The GROUP BY statement is used in conjunction with the aggregate functions to group the

result-set by one or more columns.

Syntax

SELECT column name, aggregate function (column name)
FROM table name

WHERE column name operator value

GROUP BY column_ name

Example:

We use the CUSTOMER table as an example:

[Customerld = CustomerNumber = LastMame FirstMame @ AreaCode Address
11 - 1000 Smith John 12 California
2 2 1001 Jackson Smith 45 London
3 3 1002 Johnsen John 32 London

If we try the following:

Phone

1111111
22222222
33333333

select FirstName, MAX (AreaCode) from CUSTOMER

We get the following error message:

Column 'CUSTOMER.FirstName' is invalid in the select list because it is not contained in

either an aggregate function or the GROUP BY clause.

The solution is to use the GROUP BY:

select FirstName, MAX (AreaCode) from CUSTOMER
group by FirstName

Structured Query Language (SQL)

70 Functions

FirstName = [No column name)

11.1.7 The HAVING Clause

The HAVING clause was added to SQL because the WHERE keyword could not be used with
aggregate functions.

Syntax:

SELECT column name, aggregate function (column name)
FROM table name

WHERE column name operator value

GROUP BY column name

HAVING aggregate function(column name) operator value

We use the GRADE table as an example:

select * from GRADE

Gradeld = Studentld Courseld = Grade Comment
1 | i 1 4 NULL
2 2 2 1 5 NULL
3 3 3 3] NULL
4 4 4 3 3 NULL
5 5 1 3 5 NULL

First we use the GROUP BY statement:

select CourselId, AVG(Grade) from GRADE
group by CourseId

(No column name)
; 45
2 3 2 BEEEEEEEE66667

While the following query:

select CourselId, AVG (Grade) from GRADE
group by CourseId
having AVG (Grade) >3

Courseld = [No column name)
1 i1 45

Structured Query Language (SQL)

71 Functions

11.2 User-defined Functions

IN SQL, we may also create our own functions, so-called user-defined functions.

A user-defined function is a routine that accepts parameters, performs an action, such as a
complex calculation, and returns the result of that action as a value. The return value can
either be a scalar (single) value or a table. Use this statement to create a reusable routine
that can be used in other queries.

In SQL databases, a user-defined function provides a mechanism for extending the
functionality of the database server by adding a function that can be evaluated in SQL
statements. The SQL standard distinguishes between scalar and table functions. A scalar
function returns only a single value (or NULL), whereas a table function returns a (relational)
table comprising zero or more rows, each row with one or more columns.

Stored Procedures vs. Functions:

e Only functions can return a value (using the RETURN keyword).

e Stored procedures can use RETURN keyword but without any value being passed[1]

e Functions could be used in SELECT statements, provided they don’t do any data
manipulation and also should not have any OUT or IN OUT parameters.

e Functions must return a value, but for stored procedures this is not compulsory.

e Afunction can have only IN parameters, while stored procedures may have OUT or IN
OUT parameters.

e A function is a subprogram written to perform certain computations and return a
single value.

e Astored procedure is a subprogram written to perform a set of actions, and can
return multiple values using the OUT parameter or return no value at all.

User-defined functions in SQL are declared using the CREATE FUNCTION statement.

When we have created the function, we can use the function the same way we use built-in
functions.

Structured Query Language (SQL)

12 Triggers

A database trigger is code that is automatically executed in response to certain events on a
particular table in a database.

A Trigger is executed when you insert, update or delete data in a Table specified in
the Trigger.

Create the Trigger:
IF EXISTS (SELECT name .

FROM sysobjects InSIde the

WHERE name = 'CalcAvgGrade' Trlgger you can

AND type = 'TR') d S |_
- DROP TRIGGER CalgAvgGrade Name of the Trigger use ordinary SQ

statements,
CREATE TRIGGER CalcAvgGrade ON GRADE €<— Specify which Table the create variables,
FOR UPDATE, INSERT, DELETE .
as < Trigger shall work on etc.
Specify what kind of operations the Trigger
DECLARE
@studentId int, shall act on
@AvgGrade float €— .
Internal/Local Variables
select @StudentId = StudentId from INSERTED
SQL Code

select QAvgGrade = AVG (Grade) om GRADE where StudentId = @StudentId (The "body"
update STUDENT set Tot rade = @AvgGrade where StudentId = @StudentId Of the Trigger)

GO

Note! “INSERTED” is a temporarily table containing the latest inserted data, and it is very
handy to use inside a trigger

Syntax for creating a Trigger:

CREATE TRIGGER <TriggerName> on <TableName>
FOR INSERT, UPDATE, DELETE

AS

. Create your Code here

GO

The Trigger will automatically be executed when data is inserted, updated or deleted in the
table as specified in the Trigger header.

INSERTED and DELETED:

Inside triggers we can use two special tables: the DELETED table and the INSERTED tables.
SQL Server automatically creates and manages these tables. You can use these temporary,

72

73 Triggers

memory-resident tables to test the effects of certain data modifications. You cannot modify
the data in these tables.

The DELETED table stores copies of the affected rows during DELETE and UPDATE
statements. During the execution of a DELETE or UPDATE statement, rows are deleted from
the trigger table and transferred to the DELETED table.

The INSERTED table stores copies of the affected rows during INSERT and UPDATE
statements. During an insert or update transaction, new rows are added to both the
INSERTED table and the trigger table. The rows in the INSERTED table are copies of the new
rows in the trigger table.

Example:
We will use the CUSTOMER table as an example:

Customerld = CustomerMumber LastName FirstName AreaCode Address Phone

L - 1000 Smith John 20 California 11111111
2 2 1001 Jackson Smith 53 London 22222222
3 3 1002 Johnsen John 40 London 33333333

We will create a TRIGGER that will check if the Phone number is valid when we insert or
update data in the CUSTOMER table. The validation check will be very simple, i.e., we will
check if the Phone number is less than 8 digits (which is normal length in Norway). If the
Phone number is less than 8 digits, the following message “Phone Number is not valid” be
written in place of the wrong number in the Phone column.

The TRIGGER becomes something like this:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'CheckPhoneNumber'
AND type = 'TR')
DROP TRIGGER CheckPhoneNumber
GO

CREATE TRIGGER CheckPhoneNumber ON CUSTOMER
FOR UPDATE, INSERT

AS

DECLARE

@CustomerId int,

@Phone varchar (50),

@Message varchar (50)

set nocount on

select QCustomerId = CustomerId from INSERTED

select @Phone = Phone from INSERTED

Structured Query Language (SQL)

74 Triggers

set @Message = 'Phone Number ' + @Phone + ' is not valid'

if len (@Phone) < 8 —--Check if Phone Number have less than 8 digits

update CUSTOMER set Phone = @Message where CustomerId =
@CustomerId

set nocount off

GO

We test the TRIGGER with the following INSERT INTO statement:

INSERT INTO CUSTOMER
(CustomerNumber, LastName, FirstName, AreaCode, Address, Phone)

VALUES
('"1003'", 'Obama', 'Barak', 51, 'Nevada', '4444")

The results become:

Customerld = CustomerNumber LastName = FirstName @ AreaCode Address Phone

1 i 1000 Smith John 20 California 11111111
2 1001 Jackson Smith 53 London 22222222
3 3 1002 Johnsen John 40 London 23333333
4 B 1003 Obama Barak 51 Nevada _Phone Number 4444 is not v@

As you can see, the TRIGGER works as expected.

We try to update the Phone number to a valid number:

update CUSTOMER set Phone = '44444444' where CustomerNumber = '1003'

The results become:

"._Customerld CustomerNumber ~ LastName FirstName AreaCode Address Phone

1 i 1000 Smith John 20 California 11111111
2 1001 Jackson Smith 53 London 22222222
3 3 1002 Johnsen John 40 London 3 3
4

1003 Obama Barak 51 MNevada (44444444

Structured Query Language (SQL)

13 Communication from
other Applications

A Database is a structured way to store lots of information. The information is stored in
different tables. “Everything” today is stored in databases.

Examples:

e Bank/Account systems
e Information in Web pages such as Facebook, Wikipedia, YouTube
e .. lots of other examples

This means we need to be able to communicate with the database from other applications
and programming languages in order to insert, update or retrieve data from the database.

13.1 ODBC

ODBC (Open Database Connectivity) is a standardized interface (API) for accessing the
database from a client. You can use this standard to communicate with databases from
different vendors, such as Oracle, SQL Server, etc. The designers of ODBC aimed to make it
independent of programming languages, database systems, and operating systems.

We will use the ODBC Data Source Administrator:

€1 0DBC Data Source Administrator 3]
UserDSN System DSN IFiIe DSN | Drivers | Tracing | Connection Pooling | About |

System Data Sources:

Name | Driver Add...
Default_Database National Instruments Citadel 5 T

LabY/IEW Microsoft Access Driver (*.mdb] Remove
Microsoft Access Driver [*.mdb,

Kireme Sample Database 2008 Microsoft Access Driver [*.mdb!

the indicated data provider. & System data source is visible to all users

An ODBC System data source stores information about how to connect to
on this machine, including NT services.

0K Avbryt Hielp

75

76 Communication from other Applications

ODBC - Step by Step Instructions

4 0DBC Data Source Administrator [2)X) | create New Data Source 3] T T — %)

User DSN | System DSN | Fie DSN | Diivers | Tracing | Connection Pooling | About | 0DBC. 5

cume;!loSQLSmoDBC cgmlgctlon

‘What name do you want To use to tefer to the

Select a diver for which you want to set up a data source.

User Data Sources:

Name [ya Lo
Microsoft ParadoTreiber (b) ¢ B
Mictosoft Text Driver (1 * csv) ;d“-‘;f;,\. Name: [TEST
Microsoft Text Treiber (et * csv) o

i
. e

Microsoft Visual FoxPro Driver 1 ﬂ”, How do you want to desciibe the data source?
1
¢

Description:

‘Which SQL Server do you want to connectto? (5
Server. [PC88235\DEVELOPMENT| -

The Name of your

ODBCL

@
and can only be used on the current machine.

T SQL Server
3 Avbot Hieo | Croe) aow Falte | MNewe> | avbot | Hieb
: d\"“,f::(‘ Eoar — =
Select the NG 1~ Ui org i 45
Serve, Database vou are \ ﬁ“%x;a: ¥ Perform tanslaton for character data b e
Chent Configuration. y ‘:;;16’ r times.
7 GO S o st using for the G 1 sy g s ok
Library g s e e —
"""""""" I Log ODBC diiver statstics to the log fle: |Reiuiaabiskcikasi rver
<Tibske . pc""*’““m" 8 = 9 unmnsmsmnnacm:;n;mm
Use either --~d\°f.f‘;\p§ I Attach database flename: <Thoke [Pl { foussoucettme TEST
& a Soace Deser
Wind saL .,«f:f&:;; emzc?%?:v:mmm
B3 s =
arindows or 54 n s
erver ‘ =
. . [Use ANSI quoted deniiers. el SeMoch)
authentication 7 Use 411 kg rd s o B
(Windows is : Test your AP ot e
simplest to use!) e connection to see W
if its works i ok | _cmod |

13.2 Microsoft Excel

Microsoft Excel has the ability to retrieve data from different data sources, including
different database systems. It is very simple to retrieve data from SQL Server into Excel since
Excel and SQL Server has the same vendor (Microsoft).

Page Layout Formulas Data Review View Developer Add

Eﬁ Wrap Text

A B G D E F G
3 Barak Obama 33333333333 White House 12 45667722
2 Jens Stoltenberg 22222222222 Pilstredet 45 66778899
1 John Cleese 11111111111 Pilstredet 12 12345678
4 Kurt Nilsen SLLLl s KarlJohan 34 44332277,

-
Blwole o s iwin|e

Structured Query Language (SQL)

77 Communication from other Applications

Select your ODBC connection

Add-Ins

Page Layout Formulas Developer

Microsoft Excel

2 Connedtions | 1 AR Y <. Clear |_l_|
‘ = “ ¢ L
—1 “F Properties Goreappy || S
oo — From From From FromOther | Exsting || Refresh |[Z4 son | Firer Textto
@ J ~ oo - |)Adnn(eﬂ‘ i

Access Web Text Sources~ | Connections

Home Inset Pagelayout Formuias

3 S

2
} ‘) W
Fom From Fro | esting || Retresn
A Vs Tet Connectons || 1~

[y From QU Server
T Cretea comnedion o3 SQL semertable, import asts
= 3 Table o PeotTable report.

8] s

) Crene conecion 0. SQL Serve Ansys Senices cube. Databases | Queries | OLAP Cubes |
9 mport data into xcel a3 a Table or PuotTable repart

Review View Deveioper Adddns Acobat Team

‘\Um et

TR 4 Respoly

3 adeanced || Corames Dopteates

>

S From XML Data mport <Hew Data Souce>

L8} Open ormap a xut ke nto xcel
cel Fles:
LabVIEW™
MS Access Database™
Xtreme Sample Database 2008*

)| Usethe QueyWizsd o create/edt queres

5 From Data Connection Wiard
3 meortaat 2

BE5 o o|~ov]e]w/n - g

Home Insert e d Formulas Review Developer Add-Ins 1 Home Insert Page Layout Formulas Data Review View Developer Ady|

5 Sl 5 (2] Connections. onl Y <. Clear _r]

: cut
crE& & K ES — = &
o b sot | Fiter Tetto :
Access Web Text Connedtions & 3 advanced || column 43 Copy

Sources ~ Allw 5 Edit Links
21 Data - Paste

~ - J Format Painter

Get Ext

T

2 F [
: 1Bﬂﬂﬂﬂ:lMMMMEEEMMMMMHZNME!Il]HMEH

5 3 Barak Obama 33333333333 White House 12 45667722

: § S'U%I::I: coumse | oo 3 2 Jens Stoltenberg 22222222222 Pilstredet 45 66778899

: + e e T | [pases . - : = 11111111111 Pilstredet12 12345678

3 » sy . Query Wizard - Finish 44444044004 KarlJohan34 44332277,

:‘1’ s . > \What would you fike to do next?

2 w @ Retum Data to Microsoft Office Excel Save Query...

ﬁ View data or edit query in Microsoft Query

5 @) Options... .

1 0 : : Finally, the data from the

database is in the Excel
sheet

@ < Tibake Fulfor At |

Structured Query Language (SQL)

