
	

3	

	

	

Table	of	Contents	
1	 Introduction	to	SQL	...	6	

1.1	 Data	Definition	Language	(DDL)	..	8	

1.2	 Data	Manipulation	Language	(DML)	...	8	

2	 Introduction	to	SQL	Server	..	9	

2.1	 SQL	Server	Management	Studio	...	10	

2.1.1	 Create	a	new	Database	..	11	

2.1.2	 Queries	..	12	

3	 CREATE	TABLE	...	13	

3.1	 Database	Modelling	..	15	

3.2	 Create	Tables	using	the	Designer	Tools	..	17	

3.3	 SQL	Constraints	...	17	

3.3.1	 PRIMARY	KEY	...	18	

3.3.2	 FOREIGN	KEY	...	19	

3.3.3	 NOT	NULL	/	Required	Columns	...	22	

3.3.4	 UNIQUE	...	23	

3.3.5	 CHECK	..	25	

3.3.6	 DEFAULT	..	27	

3.3.7	 AUTO	INCREMENT	or	IDENTITY	...	28	

3.4	 ALTER	TABLE	...	29	

4	 INSERT	INTO	..	31	

5	 UPDATE	...	33	

Ravit Jain
SQL BASICS FOR BEGINNERS

4	 	 Table	of	Contents	 	

Structured	Query	Language	(SQL)	

6	 DELETE	...	35	

7	 SELECT	...	37	

7.1	 The	ORDER	BY	Keyword	..	39	

7.2	 SELECT	DISTINCT	...	40	

7.3	 The	WHERE	Clause	..	40	

7.3.1	 Operators	..	41	

7.3.2	 LIKE	Operator	..	41	

7.3.3	 IN	Operator	..	42	

7.3.4	 BETWEEN	Operator	...	42	

7.4	 Wildcards	..	42	

7.5	 AND	&	OR	Operators	..	43	

7.6	 SELECT	TOP	Clause	..	44	

7.7	 Alias	..	45	

7.8	 Joins	..	45	

7.8.1	 Different	SQL	JOINs	...	46	

8	 SQL	Scripts	...	48	

8.1	 Using	Comments	...	48	

8.1.1	 Single-line	comment	..	48	

8.1.2	 Multiple-line	comment	..	48	

8.2	 Variables	...	49	

8.3	 Built-in	Global	Variables	...	50	

8.3.1	 @@IDENTITY	...	50	

8.4	 Flow	Control	...	51	

8.4.1	 IF	–	ELSE	...	51	

8.4.2	 WHILE	..	52	

8.4.3	 CASE	...	53	

5	 	 Table	of	Contents	 	

Structured	Query	Language	(SQL)	

8.4.4	 CURSOR	...	54	

9	 Views	...	56	

9.1	 Using	the	Graphical	Designer	...	57	

10	 Stored	Procedures	..	61	

10.1	 NOCOUNT	ON/NOCOUNT	OFF	..	64	

11	 Functions	..	66	

11.1	 Built-in	Functions	..	66	

11.1.1	 String	Functions	...	66	

11.1.2	 Date	and	Time	Functions	...	67	

11.1.3	 Mathematics	and	Statistics	Functions	...	67	

11.1.4	 AVG()	..	68	

11.1.5	 COUNT()	...	68	

11.1.6	 The	GROUP	BY	Statement	..	69	

11.1.7	 The	HAVING	Clause	..	70	

11.2	 User-defined	Functions	...	71	

12	 Triggers	...	72	

13	 Communication	from	other	Applications	...	75	

13.1	 ODBC	...	75	

13.2	 Microsoft	Excel	..	76	

14	 References	..	78	

	

	

6	

	

	

1 Introduction	to	SQL	
SQL	(Structured	Query	Language)	is	a	database	computer	language	designed	for	managing	
data	in	relational	database	management	systems	(RDBMS).	

SQL,	is	a	standardized	computer	language	that	was	originally	developed	by	IBM	for	querying,	
altering	and	defining	relational	databases,	using	declarative	statements.	

SQL	is	pronounced	/ˌɛs	kjuː	ˈɛl/ (letter	by	letter) or	/ˈsiːkwəl/ (as	a	word).	

	

What	can	SQL	do?	

• SQL	can	execute	queries	against	a	database	
• SQL	can	retrieve	data	from	a	database	
• SQL	can	insert	records	in	a	database	
• SQL	can	update	records	in	a	database	
• SQL	can	delete	records	from	a	database	

7	 	 Introduction	to	SQL	 	

Structured	Query	Language	(SQL)	

• SQL	can	create	new	databases	
• SQL	can	create	new	tables	in	a	database	
• SQL	can	create	stored	procedures	in	a	database	
• SQL	can	create	views	in	a	database	
• SQL	can	set	permissions	on	tables,	procedures,	and	views	

Even	if	SQL	is	a	standard,	many	of	the	database	systems	that	exist	today	implement	their	
own	version	of	the	SQL	language.	In	this	document,	we	will	use	the	Microsoft	SQL	Server	as	
an	example.	 	

There	are	lots	of	different	database	systems,	or	DBMS	–	Database	Management	Systems,	
such	as:	

• Microsoft	SQL	Server	
o Enterprise,	Developer	versions,	etc.	
o Express	version	is	free	of	charge	

• Oracle	
• MySQL	(Oracle,	previously	Sun	Microsystems)	-	MySQL	can	be	used	free	of	charge	

(open	source	license),	Web	sites	that	use	MySQL:	YouTube,	Wikipedia,	Facebook	
• Microsoft	Access	
• IBM	DB2	
• Sybase	
• …	lots	of	other	systems	

	

In	this	Tutorial,	we	will	focus	on	Microsoft	SQL	Server.	SQL	Server	uses	T-SQL	(Transact-SQL).	
T-SQL	is	Microsoft's	proprietary	extension	to	SQL.	T-SQL	is	very	similar	to	standard	SQL,	but	
in	addition	it	supports	some	extra	functionality,	built-in	functions,	etc.	

8	 	 Introduction	to	SQL	 	

Structured	Query	Language	(SQL)	

Other	useful	Tutorials	about	databases:	

• Introduction	to	Database	Systems	
• Database	Communication	in	LabVIEW	

These	Tutorials	are	located	at:	https://www.halvorsen.blog	 	 	

1.1 Data	Definition	Language	(DDL)	
The	Data	Definition	Language	(DDL)	manages	table	and	index	structure.	The	most	basic	
items	of	DDL	are	the	CREATE,	ALTER,	RENAME	and	DROP	statements:	

• CREATE	creates	an	object	(a	table,	for	example)	in	the	database.	 	
• DROP	deletes	an	object	in	the	database,	usually	irretrievably.	 	
• ALTER	modifies	the	structure	an	existing	object	in	various	ways—for	example,	adding	

a	column	to	an	existing	table.	 	

1.2 Data	Manipulation	Language	(DML)	
The	Data	Manipulation	Language	(DML)	is	the	subset	of	SQL	used	to	add,	update	and	delete	
data.	

The	acronym	CRUD	refers	to	all	of	the	major	functions	that	need	to	be	implemented	in	a	
relational	database	application	to	consider	it	complete.	Each	letter	in	the	acronym	can	be	
mapped	to	a	standard	SQL	statement:	

Operation	 SQL	 Description	
Create	 INSERT	INTO	 inserts	new	data	into	a	

database	
Read	(Retrieve)	 SELECT	 	 extracts	data	from	a	database	
Update	 UPDATE	 	 updates	data	in	a	database	
Delete	(Destroy)	 DELETE	 deletes	data	from	a	database	

	

	

9	

	

2 Introduction	to	SQL	Server	
Microsoft	is	the	vendor	of	SQL	Server.	 	

We	have	different	editions	of	SQL	Server,	where	SQL	Server	Express	is	free	to	download	and	
use.	

SQL	Server	uses	T-SQL	(Transact-SQL).	T-SQL	is	Microsoft's	proprietary	extension	to	SQL.	T-
SQL	is	very	similar	to	standard	SQL,	but	in	addition	it	supports	some	extra	functionality,	built-
in	functions,	etc.	T-SQL	expands	on	the	SQL	standard	to	include	procedural	programming,	
local	variables,	various	support	functions	for	string	processing,	date	processing,	
mathematics,	etc.	

SQL	Server	consists	of	a	Database	Engine	and	a	Management	Studio	(and	lots	of	other	stuff	
which	we	will	not	mention	here).	The	Database	engine	has	no	graphical	interface	-	it	is	just	a	
service	running	in	the	background	of	your	computer	(preferable	on	the	server).	The	
Management	Studio	is	graphical	tool	for	configuring	and	viewing	the	information	in	the	
database.	It	can	be	installed	on	the	server	or	on	the	client	(or	both).	

	

10	 	 Introduction	to	SQL	Server	 	

Structured	Query	Language	(SQL)	

2.1 SQL	Server	Management	Studio	
SQL	Server	Management	Studio	is	a	GUI	tool	included	with	SQL	Server	for	configuring,	
managing,	and	administering	all	components	within	Microsoft	SQL	Server.	The	tool	includes	
both	script	editors	and	graphical	tools	that	work	with	objects	and	features	of	the	server.	As	
mentioned	earlier,	version	of	SQL	Server	Management	Studio	is	also	available	for	SQL	Server	
Express	Edition,	for	which	it	is	known	as	SQL	Server	Management	Studio	Express.	

A	central	feature	of	SQL	Server	Management	Studio	is	the	Object	Explorer,	which	allows	the	
user	to	browse,	select,	and	act	upon	any	of	the	objects	within	the	server.	It	can	be	used	to	
visually	observe	and	analyze	query	plans	and	optimize	the	database	performance,	among	
others.	SQL	Server	Management	Studio	can	also	be	used	to	create	a	new	database,	alter	any	
existing	database	schema	by	adding	or	modifying	tables	and	indexes,	or	analyze	
performance.	It	includes	the	query	windows	which	provide	a	GUI	based	interface	to	write	
and	execute	queries.	

	

When	creating	SQL	commands	and	queries,	the	“Query	Editor”	(select	“New	Query”	from	
the	Toolbar)	is	used	(shown	in	the	figure	above).	

With	SQL	and	the	“Query	Editor”	we	can	do	almost	everything	with	code,	but	sometimes	it	is	
also	a	good	idea	to	use	the	different	Designer	tools	in	SQL	to	help	us	do	the	work	without	
coding	(so	much).	

11	 	 Introduction	to	SQL	Server	 	

Structured	Query	Language	(SQL)	

2.1.1 Create	a	new	Database	
It	is	quite	simple	to	create	a	new	database	in	Microsoft	SQL	Server.	Just	right-click	on	the	
“Databases”	node	and	select	“New	Database…”	

	

	

There	are	lots	of	settings	you	may	set	regarding	your	database,	but	the	only	information	you	
must	fill	in	is	the	name	of	your	database:	

	

12	 	 Introduction	to	SQL	Server	 	

Structured	Query	Language	(SQL)	

You	may	also	use	the	SQL	language	to	create	a	new	database,	but	sometimes	it	is	easier	to	
just	use	the	built-in	features	in	the	Management	Studio.	

2.1.2 Queries	
In	order	to	make	a	new	SQL	query,	select	the	“New	Query”	button	from	the	Toolbar.	

	

Here	we	can	write	any	kind	of	queries	that	is	supported	by	the	SQL	language.	

	

13	

	

3 CREATE	TABLE	
Before	you	start	implementing	your	tables	in	the	database,	you	should	always	spend	some	
time	design	your	tables	properly	using	a	design	tool	like,	e.g.,	ERwin,	Toad	Data	Modeler,	
PowerDesigner,	Visio,	etc.	This	is	called	Database	Modeling.	

	

The	CREATE	TABLE	statement	is	used	to	create	a	table	in	a	database.	

Syntax:	

CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....
)

The	data	type	specifies	what	type	of	data	the	column	can	hold.	

14	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

You	have	special	data	types	for	numbers,	text	dates,	etc.	

Examples:	

• Numbers:	int,	float	
• Text/Stings:	varchar(X)	–	where	X	is	the	length	of	the	string	
• Dates:	datetime	
• etc.	

Example:	

We	want	to	create	a	table	called	“CUSTOMER”	which	has	the	following	columns	and	data	
types:	

	

CREATE TABLE CUSTOMER
(
 CustomerId int IDENTITY(1,1) PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE,
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 AreaCode int NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
)
GO
	

Best	practice:	

When	creating	tables	you	should	consider	following	these	guidelines:	

• Tables:	Use	upper	case	and	singular	form	in	table	names	–	not	plural,	e.g.,	
“STUDENT”	(not	students)	

• 	 Columns:	Use	Pascal	notation,	e.g.,	“StudentId”	
• 	 Primary	Key:	 	 	

o If	the	table	name	is	“COURSE”,	name	the	Primary	Key	column	“CourseId”,	etc.	

15	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

o 	 “Always”	use	Integer	and	Identity(1,1)	for	Primary	Keys.	Use	UNIQUE	
constraint	for	other	columns	that	needs	to	be	unique,	e.g.	RoomNumber	

• 	 Specify	Required	Columns	(NOT	NULL)	–	i.e.,	which	columns	that	need	to	have	data	
or	not	

• 	 Standardize	on	few/these	Data	Types:	int,	float,	varchar(x),	datetime,	bit	
• 	 Use	English	for	table	and	column	names	
• 	 Avoid	abbreviations!	(Use	RoomNumber	–	not	RoomNo,	RoomNr,	...)	

3.1 Database	Modelling	
As	mention	in	the	beginning	of	the	chapter,	you	should	always	start	with	database	modelling	
before	you	start	implementing	the	tables	in	a	database	system.	

Below	we	see	a	database	model	in	created	with	ERwin.	

	

With	this	tool	we	can	transfer	the	database	model	as	tables	into	different	database	systems,	
such	as	e.g.,	SQL	Server.	CA	ERwin	Data	Modeler	Community	Edition	is	free	with	a	25	objects	
limit.	It	has	support	for	Oracle,	SQL	Server,	MySQL,	ODBC	and	Sybase.	

	 	

16	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

Below	we	see	the	same	tables	inside	the	design	tool	in	SQL	Server.	

	

	

17	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

3.2 	Create	Tables	using	the	Designer	Tools	
Even	if	you	can	do	“everything”	using	the	SQL	language,	it	is	sometimes	easier	to	do	it	in	the	
designer	tools	in	the	Management	Studio	in	SQL	Server.	

Instead	of	creating	a	script	you	may	as	well	easily	use	the	designer	for	creating	tables.	

Step1:	Select	“New	Table	…”:	

	

Step2:	Next,	the	table	designer	pops	up	where	you	can	add	columns,	data	types,	etc.	

	

In	this	designer	we	may	also	specify	Column	Names,	Data	Types,	etc.	

Step	3:	Save	the	table	by	clicking	the	Save	button.	

3.3 SQL	Constraints	
Constraints	are	used	to	limit	the	type	of	data	that	can	go	into	a	table.	

18	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

Constraints	can	be	specified	when	a	table	is	created	(with	the	CREATE	TABLE	statement)	or	
after	the	table	is	created	(with	the	ALTER	TABLE	statement).	

Here	are	the	most	important	constraints:	

• PRIMARY	KEY	
• NOT	NULL	
• UNIQUE	
• FOREIGN	KEY	
• CHECK	
• DEFAULT	
• IDENTITY	

In	the	sections	below	we	will	explain	some	of	these	in	detail.	

3.3.1 PRIMARY	KEY	
The	PRIMARY	KEY	constraint	uniquely	identifies	each	record	in	a	database	table.	

Primary	keys	must	contain	unique	values.	It	is	normal	to	just	use	running	numbers,	like	1,	2,	
3,	4,	5,	…	as	values	in	Primary	Key	column.	It	is	a	good	idea	to	let	the	system	handle	this	for	
you	by	specifying	that	the	Primary	Key	should	be	set	to	identity(1,1).	IDENTITY(1,1)	means	
the	first	value	will	be	1	and	then	it	will	increment	by	1.	

Each	table	should	have	a	primary	key,	and	each	table	can	have	only	ONE	primary	key.	

If	we	take	a	closer	look	at	the	CUSTOMER	table	created	earlier:	

CREATE TABLE [CUSTOMER]
(
 CustomerId int IDENTITY(1,1) PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE,
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 AreaCode int NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
)
GO

As	you	see	we	use	the	“Primary	Key”	keyword	to	specify	that	a	column	should	be	the	
Primary	Key.	

	

19	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

Setting	Primary	Keys	in	the	Designer	Tools:	

If	you	use	the	Designer	tools	in	SQL	Server,	you	can	easily	set	the	primary	Key	in	a	table	just	
by	right-click	and	select	“Set	primary	Key”.	 	

	

The	primary	Key	column	will	then	have	a	small	key	 	 in	front	to	illustrate	that	this	column	is	
a	Primary	Key.	

3.3.2 FOREIGN	KEY	
A	FOREIGN	KEY	in	one	table	points	to	a	PRIMARY	KEY	in	another	table.	

Example:	

	

We	will	create	a	CREATE	TABLE	script	for	these	tables:	

20	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

SCHOOL:	

CREATE TABLE SCHOOL
(
 SchoolId int IDENTITY(1,1) PRIMARY KEY,
 SchoolName varchar(50) NOT NULL UNIQUE,
 Description varchar(1000) NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
 PostCode varchar(50) NULL,
 PostAddress varchar(50) NULL,
)
GO

CLASS:	

CREATE TABLE CLASS
(
 ClassId int IDENTITY(1,1) PRIMARY KEY,
 SchoolId int NOT NULL FOREIGN KEY REFERENCES SCHOOL (SchoolId),
 ClassName varchar(50) NOT NULL UNIQUE,
 Description varchar(1000) NULL,
)
GO

The	FOREIGN	KEY	constraint	is	used	to	prevent	actions	that	would	destroy	links	between	
tables.	

The	FOREIGN	KEY	constraint	also	prevents	that	invalid	data	from	being	inserted	into	the	
foreign	key	column,	because	it	has	to	be	one	of	the	values	contained	in	the	table	it	points	to.	

Setting	Foreign	Keys	in	the	Designer	Tools:	

If	you	want	to	use	the	designer,	right-click	on	the	column	that	you	want	to	be	the	Foreign	
Key	and	select	“Relationships…”:	 	

21	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

	

The	following	window	pops	up	(Foreign	Key	Relationships):	

	

Click	on	the	“Add”	button	and	then	click	on	the	small	“…”	button.	Then	the	following	window	
pops	up	(Tables	and	Columns):	

22	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

	

Here	you	specify	the	primary	Key	Column	in	the	Primary	Key	table	and	the	Foreign	Key	
Column	in	the	Foreign	Key	table.	

3.3.3 NOT	NULL	/	Required	Columns	
The	NOT	NULL	constraint	enforces	a	column	to	NOT	accept	NULL	values.	

The	NOT	NULL	constraint	enforces	a	field	to	always	contain	a	value.	This	means	that	you	
cannot	insert	a	new	record,	or	update	a	record	without	adding	a	value	to	this	field.	

If	we	take	a	closer	look	at	the	CUSTOMER	table	created	earlier:	

CREATE TABLE [CUSTOMER]
(
 CustomerId int IDENTITY(1,1) PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE,
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 AreaCode int NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
)
GO

23	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

We	see	that	“CustomerNumber”,	“LastName”	and	“FirstName”	is	set	to	“NOT	NULL”,	this	
means	these	columns	needs	to	contain	data.	While	“AreaCode”,	“Address”	and	“Phone”	may	
be	left	empty,	i.e,	they	don’t	need	to	be	filled	out.	

Note!	A	primary	key	column	cannot	contain	NULL	values.	

	

Setting	NULL/NOT	NULL	in	the	Designer	Tools:	

In	the	Table	Designer	you	can	easily	set	which	columns	that	should	allow	NULL	or	not:	

	

3.3.4 UNIQUE	
The	UNIQUE	constraint	uniquely	identifies	each	record	in	a	database	table.	The	UNIQUE	and	
PRIMARY	KEY	constraints	both	provide	a	guarantee	for	uniqueness	for	a	column	or	set	of	
columns.	

A	PRIMARY	KEY	constraint	automatically	has	a	UNIQUE	constraint	defined	on	it.	

Note!	You	can	have	many	UNIQUE	constraints	per	table,	but	only	one	PRIMARY	KEY	
constraint	per	table.	

If	we	take	a	closer	look	at	the	CUSTOMER	table	created	earlier:	

CREATE TABLE [CUSTOMER]
(
 CustomerId int IDENTITY(1,1) PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE,
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 AreaCode int NULL,
 Address varchar(50) NULL,

24	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

 Phone varchar(50) NULL,
)
GO

We	see	that	the	“CustomerNumber”	is	set	to	UNIQUE,	meaning	each	customer	must	have	a	
unique	Customer	Number.	Example:	

	

Setting	UNIQUE	in	the	Designer	Tools:	

If	you	want	to	use	the	designer,	right-click	on	the	column	that	you	want	to	be	UNIQUE	and	
select	“Indexes/Keys…”:	 	

	

Then	click	“Add”	and	then	set	the	“Is	Unique”	property	to	“Yes”:	

25	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

	

3.3.5 CHECK	
The	CHECK	constraint	is	used	to	limit	the	value	range	that	can	be	placed	in	a	column.	

If	you	define	a	CHECK	constraint	on	a	single	column	it	allows	only	certain	values	for	this	
column.	

If	you	define	a	CHECK	constraint	on	a	table	it	can	limit	the	values	in	certain	columns	based	
on	values	in	other	columns	in	the	row.	

Example:	

CREATE TABLE [CUSTOMER]
(
 CustomerId int IDENTITY(1,1) PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE CHECK(CustomerNumber>0),
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 AreaCode int NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
)
GO

In	this	case,	when	we	try	to	insert	a	Customer	Number	less	than	zero	we	will	get	an	error	
message.	

Setting	CHECK	constraints	in	the	Designer	Tools:	

If	you	want	to	use	the	designer,	right-click	on	the	column	where	you	want	to	set	the	
constraints	and	select	“Check	Constraints…”:	

26	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

	

Then	click	“Add”	and	then	click	“…”	in	order	to	open	the	Expression	window:	

	

In	the	Expression	window	you	can	type	in	the	expression	you	want	to	use:	

27	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

	

3.3.6 DEFAULT	
The	DEFAULT	constraint	is	used	to	insert	a	default	value	into	a	column.	

The	default	value	will	be	added	to	all	new	records,	if	no	other	value	is	specified.	

Example:	

CREATE TABLE [CUSTOMER]
(
 CustomerId int IDENTITY(1,1) PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE,
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 Country varchar(20) DEFAULT 'Norway',

AreaCode int NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
)
GO

Setting	DEFAULT	values	in	the	Designer	Tools:	

Select	the	column	and	go	into	the	“Column	Properties”:	

	

28	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

3.3.7 AUTO	INCREMENT	or	IDENTITY	
Very	often	we	would	like	the	value	of	the	primary	key	field	to	be	created	automatically	every	
time	a	new	record	is	inserted.	

Example:	

CREATE TABLE CUSTOMER
(
 CustomerId int IDENTITY(1,1) PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE,
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 AreaCode int NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
)
GO

As	shown	below,	we	use	the	IDENTITY()	for	this.	IDENTITY(1,1)	means	the	first	value	will	be	1	
and	then	it	will	increment	by	1.	

	

Setting	identity(1,1)	in	the	Designer	Tools:	

We	can	use	the	designer	tools	to	specify	that	a	Primary	Key	should	be	an	identity	column	
that	is	automatically	generated	by	the	system	when	we	insert	data	in	to	the	table.	

Click	on	the	column	in	the	designer	and	go	into	the	Column	Properties	window:	

	

29	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

3.4 ALTER	TABLE	
The	ALTER	TABLE	statement	is	used	to	add,	delete,	or	modify	columns	in	an	existing	table.	

	

To	add	a	column	in	a	table,	use	the	following	syntax:	

ALTER TABLE table_name
ADD column_name datatype

	

To	delete	a	column	in	a	table,	use	the	following	syntax	(notice	that	some	database	systems	
don't	allow	deleting	a	column):	

ALTER TABLE table_name
DROP COLUMN column_name

	

To	change	the	data	type	of	a	column	in	a	table,	use	the	following	syntax:	

ALTER TABLE table_name
ALTER COLUMN column_name datatype

	

If	we	use	CREATE	TABLE	and	the	table	already	exists	in	the	table	we	will	get	an	error	
message,	so	if	we	combine	CREATE	TABLE	and	ALTER	TABLE	we	can	create	robust	database	
scripts	that	gives	no	errors,	as	the	example	shown	below:	

if not exists (select * from dbo.sysobjects where id = object_id(N'[CUSTOMER]') and
OBJECTPROPERTY(id, N'IsUserTable') = 1)
CREATE TABLE CUSTOMER
(
 CustomerId int PRIMARY KEY,
 CustomerNumber int NOT NULL UNIQUE,
 LastName varchar(50) NOT NULL,
 FirstName varchar(50) NOT NULL,
 AreaCode int NULL,
 Address varchar(50) NULL,
 Phone varchar(50) NULL,
)
GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and
OBJECTPROPERTY(id, N'IsUserTable') = 1 and name = 'CustomerId')
ALTER TABLE CUSTOMER ALTER COLUMN CustomerId int
Else
ALTER TABLE CUSTOMER ADD CustomerId int
GO

if exists(select * from dbo.syscolumns where id = object_id(N'[CUSTOMER]') and
OBJECTPROPERTY(id, N'IsUserTable') = 1 and name = 'CustomerNumber')
ALTER TABLE CUSTOMER ALTER COLUMN CustomerNumber int

30	 	 CREATE	TABLE	 	

Structured	Query	Language	(SQL)	

Else
ALTER TABLE CUSTOMER ADD CustomerNumber int
GO

...

	

	

31	

	

4 INSERT	INTO	
The	INSERT	INTO	statement	is	used	to	insert	a	new	row	in	a	table.	

It	is	possible	to	write	the	INSERT	INTO	statement	in	two	forms.	 	

The	first	form	doesn't	specify	the	column	names	where	the	data	will	be	inserted,	only	their	
values:	

INSERT INTO table_name
VALUES (value1, value2, value3,...)

Example:	

INSERT INTO CUSTOMER VALUES ('1000', 'Smith', 'John', 12,
'California', '11111111')

	

The	second	form	specifies	both	the	column	names	and	the	values	to	be	inserted:	

INSERT INTO table_name (column1, column2, column3,...)
VALUES (value1, value2, value3,...)

This	form	is	recommended!	

Example:	

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName, AreaCode,
Address, Phone)
VALUES ('1000', 'Smith', 'John', 12, 'California', '11111111')

	

Insert	Data	Only	in	Specified	Columns:	

It	is	also	possible	to	only	add	data	in	specific	columns.	

Example:	

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName)
VALUES ('1000', 'Smith', 'John')

Note!	You	need	at	least	to	include	all	columns	that	cannot	be	NULL.	

We	remember	the	table	definition	for	the	CUSTOMER	table:	

32	 	 INSERT	INTO	 	

Structured	Query	Language	(SQL)	

	

i.e.,	we	need	to	include	at	least	“CustomerNumber”,	“LastName”	and	“FirstName”.	
“CustomerId”	is	set	to	“identity(1,1)”	and	therefore	values	for	this	column	are	generated	by	
the	system.	

Insert	Data	in	the	Designer	Tools:	

When	you	have	created	the	tables,	you	can	easily	insert	data	into	them	using	the	designer	
tools.	Right-click	on	the	specific	table	and	select	“Edit	Top	200	Rows”:	

	

Then	you	can	enter	data	in	a	table	format,	similar	to,	e.g.,	MS	Excel:	

	

	

	

33	

	

5 UPDATE	
The	UPDATE	statement	is	used	to	update	existing	records	in	a	table.	

The	syntax	is	as	follows:	

UPDATE table_name
SET column1=value, column2=value2,...
WHERE some_column=some_value

Note!	Notice	the	WHERE	clause	in	the	UPDATE	syntax.	The	WHERE	clause	specifies	which	
record	or	records	that	should	be	updated.	If	you	omit	the	WHERE	clause,	all	records	will	be	
updated!	

Example:	

update CUSTOMER set AreaCode=46 where CustomerId=2

Before	update:	

	

After	update:	

	

	

If	you	don’t	include	the	WHERE	clause	the	result	becomes:	

	

→	So	make	sure	to	include	the	WHERE	clause	when	using	the	UPDATE	command!	

	

34	 	 UPDATE	 	

Structured	Query	Language	(SQL)	

Update	Data	in	the	Designer	Tools:	

The	same	way	you	insert	data	you	can	also	update	the	data.	Right-click	on	the	specific	table	
and	select	“Edit	Top	200	Rows”:	

	

Then	you	can	change	your	data:	

	

	

	

35	

	

6 DELETE	
The	DELETE	statement	is	used	to	delete	rows	in	a	table.	

Syntax:	

DELETE FROM table_name
WHERE some_column=some_value

Note!	Notice	the	WHERE	clause	in	the	DELETE	syntax.	The	WHERE	clause	specifies	which	
record	or	records	that	should	be	deleted.	If	you	omit	the	WHERE	clause,	all	records	will	be	
deleted!	

Example:	

delete from CUSTOMER where CustomerId=2

Before	delete:	

	

After	delete:	

	

	

Delete	All	Rows:	

It	is	possible	to	delete	all	rows	in	a	table	without	deleting	the	table.	This	means	that	the	
table	structure,	attributes,	and	indexes	will	be	intact:	

DELETE FROM table_name

Note!	Make	sure	to	do	this	only	when	you	really	mean	it!	You	cannot	UNDO	this	statement!	

Delete	Data	in	the	Designer	Tools:	

You	delete	data	in	the	designer	by	right-click	on	the	row	and	select	“Delete”:	

36	 	 DELETE	 	

Structured	Query	Language	(SQL)	

	

	

	

37	

	

7 SELECT	
The	SELECT	statement	is	probably	the	most	used	SQL	command.	The	SELECT	statement	is	
used	for	retrieving	rows	from	the	database	and	enables	the	selection	of	one	or	many	rows	or	
columns	from	one	or	many	tables	in	the	database.	

We	will	use	the	CUSTOMER	table	as	an	example.	 	

The	CUSTOMER	table	has	the	following	columns:	

	

	

The	CUSTOMER	table	contains	the	following	data:	

	

	

Example:	

select * from CUSTOMER

	

This	simple	example	gets	all	the	data	in	the	table	CUSTOMER.	The	symbol	“*”	is	used	when	
you	want	to	get	all	the	columns	in	the	table.	

	

38	 	 SELECT	 	

Structured	Query	Language	(SQL)	

If	you	only	want	a	few	columns,	you	may	specify	the	names	of	the	columns	you	want	to	
retrieve,	example:	

select CustomerId, LastName, FirstName from CUSTOMER

	

	

So	in	the	simplest	form	we	can	use	the	SELECT	statement	as	follows:	

select <column_names> from <table_names>

If	we	want	all	columns,	we	use	the	symbol	“*”	

Note!	SQL	is	not	case	sensitive.	SELECT	is	the	same	as	select.	

The	full	syntax	of	the	SELECT	statement	is	complex,	but	the	main	clauses	can	be	summarized	
as:	

SELECT
[ALL | DISTINCT]
 [TOP (expression) [PERCENT] [WITH TIES]]
select_list [INTO new_table]
[FROM table_source] [WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

It	seems	complex,	but	we	will	take	the	different	parts	step	by	step	in	the	next	sections.	

Select	Data	in	the	Designer	Tools:	

Right-click	on	a	table	and	select	“Select	Top	1000	Rows”:	

	

The	following	will	appear:	

39	 	 SELECT	 	

Structured	Query	Language	(SQL)	

	

A	Select	query	is	automatically	created	for	you	which	you	can	edit	if	you	want	to.	

7.1 The	ORDER	BY	Keyword	
If	you	want	the	data	to	appear	in	a	specific	order	you	need	to	use	the	“order	by”	keyword.	

Example:	

select * from CUSTOMER order by LastName

	

	

You	may	also	sort	by	several	columns,	e.g.	like	this:	

select * from CUSTOMER order by Address, LastName

	

	

If	you	use	the	“order	by”	keyword,	the	default	order	is	ascending	(“asc”).	If	you	want	the	
order	to	be	opposite,	i.e.,	descending,	then	you	need	to	use	the	“desc”	keyword.	

40	 	 SELECT	 	

Structured	Query	Language	(SQL)	

select * from CUSTOMER order by LastName desc

	

7.2 SELECT	DISTINCT	
In	a	table,	some	of	the	columns	may	contain	duplicate	values.	This	is	not	a	problem,	
however,	sometimes	you	will	want	to	list	only	the	different	(distinct)	values	in	a	table.	

The	DISTINCT	keyword	can	be	used	to	return	only	distinct	(different)	values.	

The	syntax	is	as	follows:	

select distinct <column_names> from <table_names>

	

Example:	

select distinct FirstName from CUSTOMER

	

7.3 The	WHERE	Clause	
The	WHERE	clause	is	used	to	extract	only	those	records	that	fulfill	a	specified	criterion.	

The	syntax	is	as	follows:	

select <column_names>
from <table_name>
where <column_name> operator value

	

Example:	

select * from CUSTOMER where CustomerNumber='1001'

	

41	 	 SELECT	 	

Structured	Query	Language	(SQL)	

Note!	SQL	uses	single	quotes	around	text	values,	as	shown	in	the	example	above.	

7.3.1 Operators	
With	the	WHERE	clause,	the	following	operators	can	be	used:	

Operator	 Description	
=	 Equal	
<>	 Not	equal	 	
>	 Greater	than	 	
<	 Less	than	 	
>=	 Greater	than	or	equal	 	
<=	 Less	than	or	equal	 	
BETWEEN	 Between	an	inclusive	range	 	
LIKE	 Search	for	a	pattern	 	
IN	 If	you	know	the	exact	value	you	want	to	return	for	at	least	one	of	the	

columns	

Examples:	

select * from CUSTOMER where AreaCode>30

	

7.3.2 LIKE	Operator	
The	LIKE	operator	is	used	to	search	for	a	specified	pattern	in	a	column.	

Syntax:	

SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern

Example:	

select * from CUSTOMER where LastName like 'J%'

	

Note!	The	"%"	sign	can	be	used	to	define	wildcards	(missing	letters	in	the	pattern)	both	
before	and	after	the	pattern.	

42	 	 SELECT	 	

Structured	Query	Language	(SQL)	

	

select * from CUSTOMER where LastName like '%a%'

	

You	may	also	combine	with	the	NOT	keyword,	example:	

select * from CUSTOMER where LastName not like '%a%'

	

7.3.3 IN	Operator	
The	IN	operator	allows	you	to	specify	multiple	values	in	a	WHERE	clause.	

Syntax:	

SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1,value2,...)

7.3.4 BETWEEN	Operator	
The	BETWEEN	operator	selects	a	range	of	data	between	two	values.	The	values	can	be	
numbers,	text,	or	dates.	

Syntax:	

SELECT column_name(s)
FROM table_name
WHERE column_name
BETWEEN value1 AND value2

7.4 Wildcards	
SQL	wildcards	can	substitute	for	one	or	more	characters	when	searching	for	data	in	a	
database.	

Note!	SQL	wildcards	must	be	used	with	the	SQL	LIKE	operator.	

With	SQL,	the	following	wildcards	can	be	used:	

43	 	 SELECT	 	

Structured	Query	Language	(SQL)	

Wildcard	 Description	
%	 A	substitute	for	zero	or	more	characters	
_	 A	substitute	for	exactly	one	character	
[charlist]	 Any	single	character	in	charlist	
[^charlist]	
or	
[!charlist]	

Any	single	character	not	in	charlist	

Examples:	

SELECT * FROM CUSTOMER WHERE LastName LIKE 'J_cks_n'

	

	

SELECT * FROM CUSTOMER WHERE CustomerNumber LIKE '[10]%'

	

7.5 AND	&	OR	Operators	
The	AND	operator	displays	a	record	if	both	the	first	condition	and	the	second	condition	is	
true.	

The	OR	operator	displays	a	record	if	either	the	first	condition	or	the	second	condition	is	true.	

Examples:	

select * from CUSTOMER where LastName='Smith' and FirstName='John'

	

	

select * from CUSTOMER where LastName='Smith' or FirstName='John'

	

44	 	 SELECT	 	

Structured	Query	Language	(SQL)	

Combining	AND	&	OR:	

You	can	also	combine	AND	and	OR	(use	parenthesis	to	form	complex	expressions).	

Example:	

select * from CUSTOMER
where LastName='Smith' and (FirstName='John' or FirstName='Smith')

	

7.6 SELECT	TOP	Clause	
The	TOP	clause	is	used	to	specify	the	number	of	records	to	return.	

The	TOP	clause	can	be	very	useful	on	large	tables	with	thousands	of	records.	Returning	a	
large	number	of	records	can	impact	on	performance.	

Syntax:	

SELECT TOP number|percent column_name(s)
FROM table_name

	

Examples:	

select TOP 1 * from CUSTOMER

	

	

You	can	also	specify	in	percent:	

select TOP 60 percent * from CUSTOMER

	

This	is	very	useful	for	large	tables	with	thousands	of	records	

45	 	 SELECT	 	

Structured	Query	Language	(SQL)	

7.7 Alias	
You	can	give	a	table	or	a	column	another	name	by	using	an	alias.	This	can	be	a	good	thing	to	
do	if	you	have	very	long	or	complex	table	names	or	column	names.	

An	alias	name	could	be	anything,	but	usually	it	is	short.	

SQL	Alias	Syntax	for	Tables:	

SELECT column_name(s)
FROM table_name
AS alias_name

SQL	Alias	Syntax	for	Columns:	

SELECT column_name AS alias_name
FROM table_name

7.8 Joins	
SQL	joins	are	used	to	query	data	from	two	or	more	tables,	based	on	a	relationship	between	
certain	columns	in	these	tables.	

46	 	 SELECT	 	

Structured	Query	Language	(SQL)	

	

7.8.1 Different	SQL	JOINs	
Before	we	continue	with	examples,	we	will	list	the	types	of	JOIN	you	can	use,	and	the	
differences	between	them.	

• JOIN:	Return	rows	when	there	is	at	least	one	match	in	both	tables	
• LEFT	JOIN:	Return	all	rows	from	the	left	table,	even	if	there	are	no	matches	in	the	

right	table	
• RIGHT	JOIN:	Return	all	rows	from	the	right	table,	even	if	there	are	no	matches	in	the	

left	table	
• FULL	JOIN:	Return	rows	when	there	is	a	match	in	one	of	the	tables	

	

Example:	

Given	2	tables:	

• SCHOOL	
• CLASS	

47	 	 SELECT	 	

Structured	Query	Language	(SQL)	

The	diagram	is	shown	below:	

	

We	want	to	get	the	following	information	using	a	query:	

SchoolName	 ClassName	

…	 …	

…	 …	

In	order	to	get	information	from	more	than	one	table	we	need	to	use	the	JOIN.	The	JOIN	is	
used	to	join	the	primary	key	in	one	table	with	the	foreign	key	in	another	table.	

select
SCHOOL.SchoolName,
CLASS.ClassName
from
SCHOOL
INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

	

	

48	

	

8 SQL	Scripts	
A	SQL	script	is	a	collection	of	SQL	statements	that	you	can	execute	in	one	operation.	You	can	
use	any	kind	of	SQL	commands,	such	as	insert,	select,	delete,	update,	etc.	In	addition	you	
can	define	and	use	variables,	and	you	may	also	use	program	flow	like	If-Else,	etc.	You	may	
also	add	comments	to	make	the	script	easier	to	read	and	understand.	

8.1 Using	Comments	
Using	comments	in	you	SQL	script	is	important	to	make	the	script	easier	to	read	and	
understand.	

In	SQL	we	can	use	2	different	kinds	of	comments:	

• Single-line	comment	
• Multiple-line	comment	

8.1.1 Single-line	comment	
We	can	comment	one	line	at	the	time	using	“--”	before	the	text	you	want	to	comment	out.	

Syntax:	

-- text_of_comment

8.1.2 Multiple-line	comment	
We	can	comment	several	line	using	“/*”	in	the	start	of	the	comment	and	“*/”	in	the	end	of	
the	comment.	

Syntax:	

/*
text_of_comment
text_of_comment
*/

49	 	 SQL	Scripts	 	

Structured	Query	Language	(SQL)	

8.2 Variables	
The	ability	to	using	variables	in	SQL	is	a	powerful	feature.	You	need	to	use	the	keyword	
DECLARE	when	you	want	to	define	the	variables.	Local	variables	must	have	the	the	symbol	
“@”	as	a	prefix.	You	also	need	to	specify	a	data	type	for	your	variable	(int,	varchar(x),	etc.).	 	

Syntax	for	declaring	variables:	

declare @local_variable data_type

	

If	you	have	more	than	one	variable	you	want	to	declare:	

declare
@myvariable1 data_type,
@myvariable2 data_type,
…

	

When	you	want	to	assign	values	to	the	variable,	you	must	use	either	a	SET	or	a	SELECT	
statement.	

Example:	

declare @myvariable int

set @myvariable=4

	

If	you	want	to	see	the	value	for	a	variable,	you	can	e.g.,	use	the	PRINT	command	like	this:	

declare @myvariable int

set @myvariable=4

print @myvariable

The	following	will	be	shown	in	SQL	Server:	

	

	

Assigning	variables	with	a	value	from	a	SELECT	statement	is	very	useful.	

50	 	 SQL	Scripts	 	

Structured	Query	Language	(SQL)	

We	use	the	CUSTOMER	table	as	an	example:	

	

You	can	assign	a	value	to	the	variable	from	a	select	statement	like	this:	

declare @mylastname varchar(50)

select @mylastname=LastName from CUSTOMER where CustomerId=2
print @mylastname

	

	

You	can	also	use	a	variable	in	the	WHERE	clause	LIKE,	e.g.,	this:	

declare @find varchar(30)
set @find = 'J%'
select * from CUSTOMER
where LastName LIKE @find

	

8.3 Built-in	Global	Variables	
SQL	have	lots	of	built-in	variables	that	are	very	useful	to	use	in	queries	and	scripts.	

8.3.1 @@IDENTITY	
After	an	INSERT,	SELECT	INTO,	or	bulk	copy	statement	is	completed,	@@IDENTITY	contains	
the	last	identity	value	that	is	generated	by	the	statement.	If	the	statement	did	not	affect	any	
tables	with	identity	columns,	@@IDENTITY	returns	NULL.	If	multiple	rows	are	inserted,	
generating	multiple	identity	values,	@@IDENTITY	returns	the	last	identity	value	generated.	

Example:	

Given	to	tables;	SCHOOL	and	COURSE:	

51	 	 SQL	Scripts	 	

Structured	Query	Language	(SQL)	

SCHOOL	table:	 COURSE	table:	

	

	

We	want	to	insert	a	new	School	into	the	SCHOOL	table	and	we	want	to	insert	2	new	Courses	
in	the	COURSE	table	that	belong	to	the	School	we	insert.	To	find	the	“SchoolId”	we	can	use	
the	@@IDENTITY	variable:	

declare @SchoolId int

-- Insert Data into SCHOOL table
insert into SCHOOL(SchoolName) values ('MIT')

select @SchoolId = @@IDENTITY

-- Insert Courses for the specific School above in the COURSE table
insert into COURSE(SchoolId,CourseName) values (@SchoolId, 'MIT-
101')
insert into COURSE(SchoolId,CourseName) values (@SchoolId, 'MIT-
201')

The	result	becomes:	

SCHOOL	table:	 COURSE	table:	

	

	

8.4 Flow	Control	
As	with	other	programming	languages	you	can	use	different	kind	of	flow	control,	such	as	IF-
ELSE,	WHILE,	etc,	which	is	very	useful.	

8.4.1 IF	–	ELSE	
The	IF-ELSE	is	very	useful.	Below	we	see	an	example:	

declare @customerNumber int

52	 	 SQL	Scripts	 	

Structured	Query	Language	(SQL)	

select @customerNumber=CustomerNumber from CUSTOMER
where CustomerId=2

if @customerNumber > 1000
 print 'The Customer Number is larger than 1000'
else
 print 'The Customer Number is not larger than 1000'

	

	

BEGIN…END:	

If	more	than	one	line	of	code	is	to	be	executed	within	an	IF	sentence	you	need	to	use	
BEGIN…END.	

Example:	

select @customerNumber=CustomerNumber from CUSTOMER where
CustomerId=2

if @customerNumber > 1000
 begin
 print 'The Customer Number is larger than 1000'
 update CUSTOMER set AreaCode=46 where CustomerId=2
 end
else
 print 'The Customer Number is not larger than 1000'

8.4.2 WHILE	
We	can	also	use	WHILE,	which	is	known	from	other	programming	languages.	

Example:	

We	are	using	the	CUSTOMER	table:	

	

and	the	following	query:	

while (select AreaCode from CUSTOMER where CustomerId=1) < 20
begin
 update CUSTOMER set AreaCode = AreaCode + 1

53	 	 SQL	Scripts	 	

Structured	Query	Language	(SQL)	

end

select * from CUSTOMER

	

As	you	can	see	the	code	inside	the	WHILE	loop	is	executed	as	long	as	“AreaCode”	for	
CustomerId=1	is	less	than	20.	For	each	iteration	is	the	“AreaCode”	for	that	customer	
incremented	with	1.	

8.4.3 CASE	
The	CASE	statement	evaluates	a	list	of	conditions	and	returns	one	of	multiple	possible	result	
expressions.	

Example:	

We	have	a	“GRADE”	table	that	contains	the	grades	for	each	student	in	different	courses:	

select GradeId, StudentId, CourseId, Grade from GRADE

	

In	the	“GRADE”	table	is	the	grades	stored	as	numbers,	but	since	the	students	get	grades	with	
the	letters	A..F	(A=5,	B=4,	C=3,	D=2,	E=1,	F=0),	we	want	to	convert	the	values	in	the	table	
into	letters	using	a	CASE	statement:	

select
GradeId,
StudentId,
CourseId,
case Grade
 when 5 then 'A'
 when 4 then 'B'
 when 3 then 'C'
 when 2 then 'D'
 when 1 then 'E'
 when 0 then 'F'

else '-'
end as Grade
from

54	 	 SQL	Scripts	 	

Structured	Query	Language	(SQL)	

GRADE

	

8.4.4 CURSOR	
In	advances	scripts,	CURSORs	may	be	very	useful.	A	CURSOR	works	like	an	advanced	WHILE	
loop	which	we	use	to	iterate	through	the	records	in	one	or	more	tables.	

CURSORS	are	used	mainly	in	stored	procedures,	triggers,	and	SQL	scripts.	

Example:	

We	use	the	CUSTOMER	table	as	an	example:	

	

We	will	create	a	CURSOR	that	iterate	through	all	the	records	in	the	CUSTOMER	table	and	
check	if	the	Phone	number	consists	of	8	digits,	if	not	the	script	will	replace	the	invalid	Phone	
number	with	the	text	“Phone	number	is	not	valid”.	

Here	is	the	SQL	Script	using	a	CURSOR:	

DECLARE
@CustomerId int,
@phone varchar(50)

DECLARE db_cursor CURSOR
FOR SELECT CustomerId from CUSTOMER

OPEN db_cursor
FETCH NEXT FROM db_cursor INTO @CustomerId

WHILE @@FETCH_STATUS = 0
BEGIN

 select @phone=Phone from CUSTOMER where CustomerId=@CustomerId

 if LEN(@phone) < 8

55	 	 SQL	Scripts	 	

Structured	Query	Language	(SQL)	

 update CUSTOMER set Phone='Phone number is not valid'
where CustomerId=@CustomerId

 FETCH NEXT FROM db_cursor INTO @CustomerId
END

CLOSE db_cursor
DEALLOCATE db_cursor

	

The	CUSTOMER	table	becomes:	

	

	

Creating	and	using	a	CURSOR	includes	these	steps:	 	

• Declare	SQL	variables	to	contain	the	data	returned	by	the	cursor.	Declare	one	
variable	for	each	result	set	column.	

• Associate	a	SQL	cursor	with	a	SELECT	statement	using	the	DECLARE	CURSOR	
statement.	The	DECLARE	CURSOR	statement	also	defines	the	characteristics	of	the	
cursor,	such	as	the	cursor	name	and	whether	the	cursor	is	read-only	or	forward-only.	

• Use	the	OPEN	statement	to	execute	the	SELECT	statement	and	populate	the	cursor.	
• Use	the	FETCH	INTO	statement	to	fetch	individual	rows	and	have	the	data	for	each	

column	moved	into	a	specified	variable.	Other	SQL	statements	can	then	reference	
those	variables	to	access	the	fetched	data	values.	 	

• When	you	are	finished	with	the	cursor,	use	the	CLOSE	statement.	Closing	a	cursor	
frees	some	resources,	such	as	the	cursor's	result	set	and	its	locks	on	the	current	row.	
The	DEALLOCATE	statement	completely	frees	all	resources	allocated	to	the	cursor,	
including	the	cursor	name.	

	

56	

	

9 Views	
Views	are	virtual	table	for	easier	access	to	data	stored	in	multiple	tables.	

	

Syntax	for	creating	a	View:	

CREATE VIEW <ViewName>
AS
…

...	but	it	might	be	easier	to	do	it	in	the	graphical	view	designer	that	are	built	into	SQL	
Management	Studio.	

Syntax	for	using	a	View:	

select * from <MyView> where …

As	shown	above,	we	use	a	VIEW	just	like	we	use	an	ordinary	table.	

57	 	 Views	 	

Structured	Query	Language	(SQL)	

Example:	

We	use	the	SCHOOL	and	CLASS	tables	as	an	example	for	our	View.	We	want	to	create	a	View	
that	lists	all	the	existing	schools	and	the	belonging	classes.	 	

	

We	create	the	VIEW	using	the	CREATE	VIEW	command:	

CREATE VIEW SchoolView
AS

SELECT
SCHOOL.SchoolName,
CLASS.ClassName
FROM
SCHOOL
INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

Note!	In	order	to	get	information	from	more	than	one	table,	we	need	to	link	the	tables	
together	using	a	JOIN.	

9.1 Using	the	Graphical	Designer	
We	create	the	same	View	using	the	graphical	designer	in	SQL	Server	Management	Studio:	

58	 	 Views	 	

Structured	Query	Language	(SQL)	

	

Step	1:	Right-click	on	the	View	node	and	select	“New	View…”:	 	

	

Step	2:	Add	necessary	tables:	

59	 	 Views	 	

Structured	Query	Language	(SQL)	

	

Step	3:	Add	Columns,	etc.	

	

	

Step	4:	Save	the	VIEW:	

	

60	 	 Views	 	

Structured	Query	Language	(SQL)	

Step	5:	Use	the	VIEW	in	a	query:	

select * from SchoolView

	

	

61	

	

10 Stored	Procedures	
A	Stored	Procedure	is	a	precompiled	collection	of	SQL	statements.	In	a	stored	procedure	you	
can	use	if	sentence,	declare	variables,	etc.	

	

Syntax	for	creating	a	Stored	Procedure:	

CREATE PROCEDURE <ProcedureName>
@<Parameter1> <datatype>
…
declare
@myVariable <datatype>
… Create your Code here

Note!	You	need	to	use	the	symbol	“@”	before	variable	names.	

Syntax	for	using	a	Stored	Procedure:	

EXECUTE <ProcedureName(…)>

Example:	

62	 	 Stored	Procedures	 	

Structured	Query	Language	(SQL)	

We	use	the	SCHOOL	and	CLASS	tables	as	an	example	for	our	Stored	Procedure.	We	want	to	
create	a	Stored	Procedure	that	lists	all	the	existing	schools	and	the	belonging	classes.	 	

	

We	create	the	Stored	Procedure	as	follows:	

CREATE PROCEDURE GetAllSchoolClasses
AS

select
SCHOOL.SchoolName,
CLASS.ClassName
from
SCHOOL
inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
order by SchoolName, ClassName

	

When	we	have	created	the	Stored	Procedure	we	can	run	(or	execute)	the	Stored	procedure	
using	the	execute	command	like	this:	

execute GetAllSchoolClasses

	

	

We	can	also	create	a	Store	Procedure	with	input	parameters.	

Example:	

63	 	 Stored	Procedures	 	

Structured	Query	Language	(SQL)	

We	use	the	same	tables	in	this	example	(SCHOOL	and	CLASS)	but	now	we	want	to	list	all	
classes	for	a	specific	school.	

The	Stored	Procedure	becomes:	

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName varchar(50)
AS

select
SCHOOL.SchoolName,
CLASS.ClassName
from
SCHOOL
inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
where SchoolName=@SchoolName
order by ClassName

We	run	(or	execute)	the	Stored	Procedure:	

execute GetSpecificSchoolClasses 'TUC'

	

or:	

execute GetSpecificSchoolClasses 'NTNU'

	

	

When	we	try	to	create	a	Stored	Procedure	that	already	exists	we	get	the	following	error	
message:	

There is already an object named 'GetSpecificSchoolClasses' in the database.	

Then	we	first	need	to	delete	(or	DROP)	the	old	Stored	Procedure	before	we	can	recreate	it	
again.	

We	can	do	this	manually	in	the	Management	Studio	in	SQL	like	this:	

64	 	 Stored	Procedures	 	

Structured	Query	Language	(SQL)	

	

A	better	solution	is	to	add	code	for	this	in	our	script,	like	this:	

IF EXISTS (SELECT name
 FROM sysobjects
 WHERE name = GetSpecificSchoolClasses '
 AND type = 'P')
 DROP PROCEDURE GetSpecificSchoolClasses
GO

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName varchar(50)
AS

select
SCHOOL.SchoolName,
CLASS.ClassName
from
SCHOOL
inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
where SchoolName=@SchoolName
order by ClassName

So	we	use	CREATE	PROCEDURE	to	create	a	Stored	Procedure	and	we	use	DROP	PROCEDURE	
to	delete	a	Stored	Procedure.	

10.1 NOCOUNT	ON/NOCOUNT	OFF	
In	advanced	Stored	Procedures	and	Script,	performance	is	very	important.	Using	SET	
NOCOUNT	ON	and	SET	NOCOUNT	OFF	makes	the	Stored	Procedure	run	faster.	

SET	NOCOUNT	ON	stops	the	message	that	shows	the	count	of	the	number	of	rows	affected	
by	a	Transact-SQL	statement	or	stored	procedure	from	being	returned	as	part	of	the	result	
set.	

65	 	 Stored	Procedures	 	

Structured	Query	Language	(SQL)	

SET	NOCOUNT	ON	prevents	the	sending	of	DONE_IN_PROC	messages	to	the	client	for	each	
statement	in	a	stored	procedure.	For	stored	procedures	that	contain	several	statements	that	
do	not	return	much	actual	data,	or	for	procedures	that	contain	Transact-SQL	loops,	setting	
SET	NOCOUNT	to	ON	can	provide	a	significant	performance	boost,	because	network	traffic	is	
greatly	reduced.	

Example:	

IF EXISTS (SELECT name
 FROM sysobjects
 WHERE name = 'sp_LIMS_IMPORT_REAGENT'
 AND type = 'P')
 DROP PROCEDURE sp_LIMS_IMPORT_REAGENT
GO

CREATE PROCEDURE sp_LIMS_IMPORT_REAGENT
@Name varchar(100),
@LotNumber varchar(100),
@ProductNumber varchar(100),
@Manufacturer varchar(100)

AS
SET NOCOUNT ON

if not exists (SELECT ReagentId FROM LIMS_REAGENTS WHERE
[Name]=@Name)
 INSERT INTO LIMS_REAGENTS ([Name], ProductNumber, Manufacturer)
 VALUES (@Name, @ProductNumber, @Manufacturer)
else
UPDATE LIMS_REAGENTS SET
 [Name] = @Name,
 ProductNumber = @ProductNumber,
 Manufacturer = @Manufacturer,
 WHERE [Name] = @Name

SET NOCOUNT OFF
GO

This	Stored	Procedure	updates	a	table	in	the	database	and	in	this	case	you	don’t	normally	
need	feedback,	sp	setting	SET	NOCOUNT	ON	at	the	top	in	the	stored	procedure	is	a	good	
idea.	it	is	also	good	practice	to	SET	NOCOUNT	OFF	at	the	bottom	of	the	stored	procedure.	

	

	

	

	

66	

	

11 Functions	
With	SQL	and	SQL	Server	you	can	use	lots	of	built-in	functions	or	you	may	create	your	own	
functions.	Here	we	will	learn	to	use	some	of	the	most	used	built-in	functions	and	in	addition	
we	will	create	our	own	function.	

11.1 Built-in	Functions	
SQL	has	many	built-in	functions	for	performing	calculations	on	data.	

We	have	2	categories	of	functions,	namely	aggregate	functions	and	scalar	functions.	
Aggregate	functions	return	a	single	value,	calculated	from	values	in	a	column,	while	scalar	
functions	return	a	single	value,	based	on	the	input	value.	

Aggregate	functions	-	examples:	

• AVG()	-	Returns	the	average	value	
• STDEV()	-	Returns	the	standard	deviation	value	
• COUNT()	-	Returns	the	number	of	rows	
• MAX()	-	Returns	the	largest	value	
• MIN()	-	Returns	the	smallest	value	
• SUM()	-	Returns	the	sum	
• etc.	

Scalar	functions	-	examples:	

• UPPER()	-	Converts	a	field	to	upper	case	
• LOWER()	-	Converts	a	field	to	lower	case	
• LEN()	-	Returns	the	length	of	a	text	field	
• ROUND()	-	Rounds	a	numeric	field	to	the	number	of	decimals	specified	
• GETDATE()	-	Returns	the	current	system	date	and	time	
• etc.	

11.1.1 String	Functions	
Here	are	some	useful	functions	used	to	manipulate	with	strings	in	SQL	Server:	

67	 	 Functions	 	

Structured	Query	Language	(SQL)	

• CHAR	 	
• CHARINDEX	 	
• REPLACE	 	
• SUBSTRING	 	
• LEN	 	
• REVERSE	 	
• LEFT	
• RIGHT	 	 	
• LOWER	 	
• UPPER	 	
• LTRIM	 	
• RTRIM	

Read	more	about	these	functions	in	the	SQL	Server	Help.	

11.1.2 Date	and	Time	Functions	
Here	are	some	useful	Date	and	Time	functions	in	SQL	Server:	

• DATEPART	
• GETDATE	
• DATEADD	
• DATEDIFF	
• DAY	
• MONTH	
• YEAR	
• ISDATE	

Read	more	about	these	functions	in	the	SQL	Server	Help.	

11.1.3 Mathematics	and	Statistics	Functions	
Here	are	some	useful	functions	for	mathematics	and	statistics	in	SQL	Server:	

• COUNT	
• MIN,	MAX	
• COS,	SIN,	TAN	
• SQRT	
• STDEV	
• MEAN	
• AVG	

68	 	 Functions	 	

Structured	Query	Language	(SQL)	

Read	more	about	these	functions	in	the	SQL	Server	Help.	

11.1.4 AVG()	
The	AVG()	function	returns	the	average	value	of	a	numeric	column.	

Syntax:	

SELECT AVG(column_name) FROM table_name

Example:	

Given	a	GRADE	table:	

	

We	want	to	find	the	average	grade	for	a	specific	student:	

select AVG(Grade) as AvgGrade from GRADE where StudentId=1

	

11.1.5 COUNT()	
The	COUNT()	function	returns	the	number	of	rows	that	matches	a	specified	criteria.	

	

The	COUNT(column_name)	function	returns	the	number	of	values	(NULL	values	will	not	be	
counted)	of	the	specified	column:	

SELECT COUNT(column_name) FROM table_name

	

	 The	COUNT(*)	function	returns	the	number	of	records	in	a	table:	

SELECT COUNT(*) FROM table_name

	

69	 	 Functions	 	

Structured	Query	Language	(SQL)	

We	use	the	CUSTOMER	table	as	an	example:	

	

select COUNT(*) as NumbersofCustomers from CUSTOMER

	

11.1.6 The	GROUP	BY	Statement	
Aggregate	functions	often	need	an	added	GROUP	BY	statement.	

The	GROUP	BY	statement	is	used	in	conjunction	with	the	aggregate	functions	to	group	the	
result-set	by	one	or	more	columns.	

Syntax	

SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

Example:	

We	use	the	CUSTOMER	table	as	an	example:	

	

If	we	try	the	following:	

select FirstName, MAX(AreaCode) from CUSTOMER

We	get	the	following	error	message:	

Column 'CUSTOMER.FirstName' is invalid in the select list because it is not contained in
either an aggregate function or the GROUP BY clause.

The	solution	is	to	use	the	GROUP	BY:	

select FirstName, MAX(AreaCode) from CUSTOMER
group by FirstName

70	 	 Functions	 	

Structured	Query	Language	(SQL)	

	

11.1.7 The	HAVING	Clause	
The	HAVING	clause	was	added	to	SQL	because	the	WHERE	keyword	could	not	be	used	with	
aggregate	functions.	

Syntax:	

SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value

	

We	use	the	GRADE	table	as	an	example:	

select * from GRADE

	

First	we	use	the	GROUP	BY	statement:	

select CourseId, AVG(Grade) from GRADE
group by CourseId

	

	

While	the	following	query:	

select CourseId, AVG(Grade) from GRADE
group by CourseId
having AVG(Grade)>3

	

71	 	 Functions	 	

Structured	Query	Language	(SQL)	

11.2 User-defined	Functions	
IN	SQL,	we	may	also	create	our	own	functions,	so-called	user-defined	functions.	

A	user-defined	function	is	a	routine	that	accepts	parameters,	performs	an	action,	such	as	a	
complex	calculation,	and	returns	the	result	of	that	action	as	a	value.	The	return	value	can	
either	be	a	scalar	(single)	value	or	a	table.	Use	this	statement	to	create	a	reusable	routine	
that	can	be	used	in	other	queries.	

	

In	SQL	databases,	a	user-defined	function	provides	a	mechanism	for	extending	the	
functionality	of	the	database	server	by	adding	a	function	that	can	be	evaluated	in	SQL	
statements.	The	SQL	standard	distinguishes	between	scalar	and	table	functions.	A	scalar	
function	returns	only	a	single	value	(or	NULL),	whereas	a	table	function	returns	a	(relational)	
table	comprising	zero	or	more	rows,	each	row	with	one	or	more	columns.	

Stored	Procedures	vs.	Functions:	

• Only	functions	can	return	a	value	(using	the	RETURN	keyword).	 	
• Stored	procedures	can	use	RETURN	keyword	but	without	any	value	being	passed[1]	 	
• Functions	could	be	used	in	SELECT	statements,	provided	they	don’t	do	any	data	

manipulation	and	also	should	not	have	any	OUT	or	IN	OUT	parameters.	 	
• Functions	must	return	a	value,	but	for	stored	procedures	this	is	not	compulsory.	 	
• A	function	can	have	only	IN	parameters,	while	stored	procedures	may	have	OUT	or	IN	

OUT	parameters.	 	
• A	function	is	a	subprogram	written	to	perform	certain	computations	and	return	a	

single	value.	 	
• A	stored	procedure	is	a	subprogram	written	to	perform	a	set	of	actions,	and	can	

return	multiple	values	using	the	OUT	parameter	or	return	no	value	at	all.	

	

User-defined	functions	in	SQL	are	declared	using	the	CREATE	FUNCTION	statement.	

When	we	have	created	the	function,	we	can	use	the	function	the	same	way	we	use	built-in	
functions.	

	

72	

	

12 Triggers	
A	database	trigger	is	code	that	is	automatically	executed	in	response	to	certain	events	on	a	
particular	table	in	a	database.	

	

Syntax	for	creating	a	Trigger:	

CREATE TRIGGER <TriggerName> on <TableName>
FOR INSERT, UPDATE, DELETE
AS
… Create your Code here
GO

The	Trigger	will	automatically	be	executed	when	data	is	inserted,	updated	or	deleted	in	the	
table	as	specified	in	the	Trigger	header.	

INSERTED	and	DELETED:	

Inside	triggers	we	can	use	two	special	tables:	the	DELETED	table	and	the	INSERTED	tables.	
SQL	Server	automatically	creates	and	manages	these	tables.	You	can	use	these	temporary,	

73	 	 Triggers	 	

Structured	Query	Language	(SQL)	

memory-resident	tables	to	test	the	effects	of	certain	data	modifications.	You	cannot	modify	
the	data	in	these	tables.	

The	DELETED	table	stores	copies	of	the	affected	rows	during	DELETE	and	UPDATE	
statements.	During	the	execution	of	a	DELETE	or	UPDATE	statement,	rows	are	deleted	from	
the	trigger	table	and	transferred	to	the	DELETED	table.	

The	INSERTED	table	stores	copies	of	the	affected	rows	during	INSERT	and	UPDATE	
statements.	During	an	insert	or	update	transaction,	new	rows	are	added	to	both	the	
INSERTED	table	and	the	trigger	table.	The	rows	in	the	INSERTED	table	are	copies	of	the	new	
rows	in	the	trigger	table.	

Example:	

We	will	use	the	CUSTOMER	table	as	an	example:	

	

We	will	create	a	TRIGGER	that	will	check	if	the	Phone	number	is	valid	when	we	insert	or	
update	data	in	the	CUSTOMER	table.	The	validation	check	will	be	very	simple,	i.e.,	we	will	
check	if	the	Phone	number	is	less	than	8	digits	(which	is	normal	length	in	Norway).	If	the	
Phone	number	is	less	than	8	digits,	the	following	message	“Phone	Number	is	not	valid”	be	
written	in	place	of	the	wrong	number	in	the	Phone	column.	

The	TRIGGER	becomes	something	like	this:	

IF EXISTS (SELECT name
 FROM sysobjects
 WHERE name = 'CheckPhoneNumber'
 AND type = 'TR')
 DROP TRIGGER CheckPhoneNumber
GO

CREATE TRIGGER CheckPhoneNumber ON CUSTOMER
FOR UPDATE, INSERT
AS

DECLARE
@CustomerId int,
@Phone varchar(50),
@Message varchar(50)

set nocount on

select @CustomerId = CustomerId from INSERTED

select @Phone = Phone from INSERTED

74	 	 Triggers	 	

Structured	Query	Language	(SQL)	

set @Message = 'Phone Number ' + @Phone + ' is not valid'

if len(@Phone) < 8 --Check if Phone Number have less than 8 digits
 update CUSTOMER set Phone = @Message where CustomerId =
@CustomerId

set nocount off

GO

We	test	the	TRIGGER	with	the	following	INSERT	INTO	statement:	

INSERT INTO CUSTOMER
(CustomerNumber, LastName, FirstName, AreaCode, Address, Phone)

VALUES
('1003', 'Obama', 'Barak', 51, 'Nevada', '4444')

The	results	become:	

	

As	you	can	see,	the	TRIGGER	works	as	expected.	

We	try	to	update	the	Phone	number	to	a	valid	number:	

update CUSTOMER set Phone = '44444444' where CustomerNumber = '1003'

The	results	become:	

	

	

75	

	

13 Communication	from	
other	Applications	

A	Database	is	a	structured	way	to	store	lots	of	information.	The	information	is	stored	in	
different	tables.	“Everything”	today	is	stored	in	databases.	

Examples:	

• Bank/Account	systems	 	
• Information	in	Web	pages	such	as	Facebook,	Wikipedia,	YouTube	
• …	lots	of	other	examples	

This	means	we	need	to	be	able	to	communicate	with	the	database	from	other	applications	
and	programming	languages	in	order	to	insert,	update	or	retrieve	data	from	the	database.	 	

13.1 ODBC	
ODBC	(Open	Database	Connectivity)	is	a	standardized	interface	(API)	for	accessing	the	
database	from	a	client.	You	can	use	this	standard	to	communicate	with	databases	from	
different	vendors,	such	as	Oracle,	SQL	Server,	etc.	The	designers	of	ODBC	aimed	to	make	it	
independent	of	programming	languages,	database	systems,	and	operating	systems.	

We	will	use	the	ODBC	Data	Source	Administrator:	

	

76	 	 Communication	from	other	Applications	 	

Structured	Query	Language	(SQL)	

	

13.2 Microsoft	Excel	
Microsoft	Excel	has	the	ability	to	retrieve	data	from	different	data	sources,	including	
different	database	systems.	It	is	very	simple	to	retrieve	data	from	SQL	Server	into	Excel	since	
Excel	and	SQL	Server	has	the	same	vendor	(Microsoft).	

	

77	 	 Communication	from	other	Applications	 	

Structured	Query	Language	(SQL)	

	

