Team Adity,

Hosteller .
antastic notes

Content (click link)

Fundamental concept

Bisic I/O operation

Control flow :conditional Blocks
Control flow :Loop

List

Dictionary

Array

Function

Numpy

Panda

module and package

File

Error and Exception Handling

Python Notes

Created by GPA HOSTELER
BINODPC

CLICK HERE TO JOIN OUKi>APP GROUP

24

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

LI LIEDE TN INTRL. ALID \A/JLUATCADD /—mDNALID

Files

Whatis a file?

File is a named location on disk to store related information. It is used to
permanently store data in a non-volatile memory (e.g. hard disk).

Since, random access memory (RAM) is volatile which loses its data when
computer is turned off, we use files for future use of the data.

When we want to read from or write to a file we need to open it first. When we are done, it
needs to be closed, so that resources that are tiedwith the file are freed.

Hence, in Python, a file operation takes place in the following order.

1. Opena file
2. Read or write (perform operation)
3. Close the file

How to opena file?

Python has a built-in function open()to open a file. This function returns a file object, also called
a handle, as it is used to read or modify the file accordingly.

File handling is an important part of any web application.

Python has several functions for creating, reading, updating, and deleting
files.

File Handling

The key function for working with files in Python is the open()function.
The open() function takes two parameters; filename, and mode.
There are four different methods (modes) for opening a file:

" - Read - Default value. Opens a file for reading, error if the file does not
exist

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

a - Append - Opens a file for appending, creates the file if it does not exis
“w" - Write - Opens a file for writing, truncating (remove) the file first.

X" - Create - Creates the specified file, returns an error if the file exists

In addition you can specify if the file should be handled as binary or text
mode

"t" - Text - Default value. Text mode

"b" - Binary - Binary mode (e.g. images)

+ Open afile for updating (reading and writing)

Syntax
To open a file for reading it is enough to specify the name of the file:
f = open('demofile.txt","r")

The code above is the same as:
f = open(" demofile.txt","t")

Because "r"for read, and "t"for text are the default values, you do not
need to specify them.

Note: Make sure the file exists, or else you will get an error.

Open a File on the Server
Assume we have the following file, located in the same folder as Python:

demofile.txt

Hello! Welcome to demofile.txt
This fileis for testing purposes.
Good Luck!

To open the file, use the built-in open() function.

The open() function returns a file object, which has a read() method for
reading the content of the file:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example

f = open("demofile.txt", "r")
prini(f.read()

Read Only Parts of the File

By default the read()method returns the whole text, but you can also
specify how many characters you want to return:

Example
Return the 5 first characters of the file:

f = open("demofile.txt", ")
print(fread(5))
Read Lines

You can return one line by using the readline()method:

Example
Read one line of the file:
f = open("demofile.txt", "r")

print(freadiine()

By calling readline()two times, you can read the two first lines:

Example

Read two lines of the file:
f = open("demofile.txt", "r")
print(freadine()
print(freadiine()

Run example »

By looping through the lines of the file, you can read the whole file, line by
line:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example

Loop through the file line by line:

f = open("demofile.txt", 'r")
forxin f:
print(x)

Close Files

It is a good practice to always close the file when you are done with it.

Example

Close the file when you are finish with it:

f = open("demofile.txt", 'r")
prini(freadiine()
fclose()

Run example »

Note: You should always close your files, in some cases, due to buffering,
changes made to a file may not show until you close the file.

Write to an Existing File

To write to an existing file, you must add a parameter to
the open() function:

"a" - Append - will append to the end of the file

"w" - Write - will overwrite any existing content

Example

Open the file "demofile2.txt" and append content to the file:

f = open("demofile2.txt", "a")
f.write("Now the filehas more content!™)
fcose()

#open and read the fileafter the appending:f = open(
“demofile2.txt", "r") print(fread()

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Open the file "demofile3.txt" and overwrite the content:

f = open("demofile3.txt", "w")
f.write("Woops! | have deleted the content!")
fcose()

#open and read the fileafter the appending:
f = open("demofile3.txt", "r")

print(fread()

Note: the "w" method will overwrite the entire file.

Create a New File

To create a new file in Python, use the open()method, with one of the
following parameters:

"x" - Create - will create a file, returns an error if the file exist "a" - Append
- will create a file if the specified file does not exist"w" - Write - will create a
file if the specified file does not exist

Example

Create a file called "myfile.txt":
f = open("myfile.txt", "x')
Result: a new empty file is created!

Example

Create a new file if it does not exist:
f = open("'myfile.txt", "w")
Delete aFile

To delete a file, you must import the OS module, and run
its 0s.remove() function:

Example

Remove the file "demofile.txt":

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

import 0s
osrermove('dermofieixt’)
Check if File exist:

To avoid getting an error, you might want to check if the file exists before
you try to delete it:

Example

Check if file exists, then delete it:

import 0s
if os.path.exists("demofile.txt"):
osremove('demofieixt’)
else
print("The filedoes not exist')

Delete Folder

To delete an entire folder, use the os.rmdir()method:

Example

Remove the folder "myfolder":

import 0s
osrmdir('myfolder’)

Note: You can only remove empty folders.

How to read filesin Python?

To read a file in Python, we must open the file in reading mode.

There are various methods available for this purpose. We can use
the read(size) method to read in sizenumber of data. If sizeparameter is
not specified, it reads and returns up to the end of the file.

>>> f = open(test.txt" P ,encoding = 'Utf-8)

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

>>> f.readlines()
['This is my first file\n', 'This file\n', 'contains three lines\n]

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Errors and Exceptions in Python

Errors are problems in a program that causes the program to stop its execution. On
the other hand, exceptions are raised when some internal events change the program’s
normal flow.

Table of Content

« Syntax Errors in Python

« Python Logical Errors (Exception)
« Common Builtin Exceptions

« Error Handling

Exception: matlab ek error jo program chalate waqt hoti hai. Python mein, jab error
aati hai to program crash nahi hota balki aap use handle kar sakte ho try aur except
blocks ka use karke, taaki aap decide kar sako ki error hone par kya karna hai.

Syntax Errors in Python

When the proper syntax of the language is not followed then a syntax error is thrown.
Example: It returns a syntax error message because after the if statement a LS
missing. We can fix this by writing the correct syntax.

Python3

initialize the amount variable

amount = 10000

check that You are eligible to
purchase Dsa Self Paced or not
if(amount>2999)
print("You are eligible to purchase Dsa Self Paced")

Output:

File "/home/ac35388186f4ca7978956ff46697138b.py", line 4
if{amount»>2999)

o~

SyntaxError: invalid syntax

Example 2: When indentation is not correct.
Python

if(a<3d):

print(*gfg")

Output

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

File "/home/959e778cclbl5563df98d2a1e26f92e6.py", line 2
print("gfg")

P

IndentationError: expected an indented block

Python Logical Errors (Exception)

A logical error in Python, or in any programming language, is a type of that
occurs when a program runs without crashing (achanak se band hona) but produces
incorrect or unintended (unexpected) results. Logical errors are mistakes in the
program’s logic that lead to incorrect behavior or output, despite the syntax being
correct.

Characteristics of Logical Errors

1. No Syntax Error: The code runs successfully without any syntax errors.

2. Unexpected Output: The program produces output that is different from
what is expected.

3. Difficult to Detect: Logical errors can be subtle and are often harder to
identify and fix compared to syntax errors because the program appears to
run correctly.

4. Varied Causes: They can arise from incorrect assumptions, faulty logic,
improper use of operators, or incorrect sequence of instructions.

Example of a Logical Error
Consider a simple example where we want to compute the average of a list of
numbers:
Python
numbers = [10, 20, 30, 40, 50]
total = 0

Calculate the sum of the numbers
for number in numbers:
total += number

Calculate the average (this has a logical error)
average = total / len(numbers) - 1

print("The average is:", average)
Analysis
« Expected Output: The average of the numbers [10, 20, 30, 40, 50] should
be 30.
« Actual Output: The program will output The average is: 29.0.
Cause of Logical Error
The logical error is in the calculation of the average:
average = total / len(numbers) - 1

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Instead, it should be:

average = total / len(numbers)

The incorrect logic here is the subtraction of 1, which results in a wrong average
calculation.

Common Builtin Exceptions

Some of the common built-in exceptions are other than above mention exceptions
are:

Exception Description
IndexError When the wrong index of a list is retrieved.
AssertionError It occurs when the assert statement fails
AttributeError It occurs when an attribute assignment is failed.
ImportError It occurs when an imported module is not found.
KeyError It occurs when the key of the dictionary is not found.
NameError It occurs when the variable is not defined.
MemoryError It occurs when a program runs out of memory.

It occurs when a function and operation are applied in

TypeError an incorrect type.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Note: For more information, refer to Built-in Exceptions in Python

Error Handling

When an error and an exception are raised then we handle that with the help of the
Handling method.
Handling Exceptions with Try/Except/Finally
We can handle errors by the Try/Except/Finally method. we write unsafe code in the
try, fall back code in except and final code in finally block.
Python
put unsafe operation in try block
try:
print(*code start™)

unsafe operation perform
print(1/ 0)

if error occur the it goes in except block
except:
print(“an error occurs")

final code in finally block
finally:
print(*gautam_kumar_mahto")
Output:
code start
an error occurs
Gautam_kumar_mbhato
Raising exceptions for a predefined condition
When we want to code for the limitation of certain conditions then we can raise an
exception.
Python3
try for unsafe code
try:
amount = 1999
if amount < 2999:

raise the ValueError

raise ValueError("please add money in your account")
else:

print(*'You are eligible to purchase DSA Self Paced course™)

if false then raise the value error
except ValueError as e:
print(e)
Output:
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/built-exceptions-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

please add money in your account

Click & go th first page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

Modules and packages

we will see the difference between Python’s Module, Package, and Library. We
will also see some examples of each to things more clear.

What is Module in Python?

The module is a simple Python file that contains collections of functions and
global variables and with having a .py extension file. It is an executable file and
to organize all the modules we have the concept called Package in Python.

Examples of modules

1. Datetime

2. Regex
3. Random etc.

Example: Save the code in a file called demo_module.py

« Python3

def myModule(name):

print("This is My Module : "+ name)

Import module named demo_module and call the myModule function inside it.

o Python3

import demo_module

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-datetime-module/
https://www.geeksforgeeks.org/regular-expression-python-examples-set-1/
https://www.geeksforgeeks.org/python-random-function/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

demo_module.myModule(**Math™)

Output:
This is My Module : Math

What is Package in Python?

The package is a simple directory having collections of modules. This directory
contains Python modules and also having __init__.py file by which the interpreter
interprets it as a Package. The package is simply a namespace. The package also
contains sub-packages inside it.

Examples of Packages:

1. Numpy
2. Pandas

Example:
Student(Package)

| __init__.py (Constructor)

| details.py (Module)

| marks.py (Module)

| collegeDetails.py (Module)
What is Library in Python

The library is having a collection of related functionality of codes that allows you
to perform many tasks without writing your code. It is a reusable chunk of code
that we can use by importing it into our program, we can just use it by
importing that library and calling the method of that library with a period(.).
However, it is often assumed that while a package is a collection of modules, a
library is a collection of packages.

Examples of Libraries:

1. Matplotlib
2. Pytorch

3. Pygame
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/__init__-in-python/
https://www.geeksforgeeks.org/numpy-in-python-set-1-introduction/
https://www.geeksforgeeks.org/creating-a-pandas-series/
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/understanding-pytorch-lightning-datamodules/
https://www.geeksforgeeks.org/pygame-import-and-initialize/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

4. Seaborn etc.
Example:
Importing pandas library and call read_csv method using an alias of pandas i.e.

pd.

« Python3

import pandas as pd

df = pd.read_csv("file_name.csv")

Click & go th first page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/introduction-to-seaborn-python/

Numpy

NumPy stands for Numerical Python, is an open-source Python library that
provides support for large, multi-dimensional arrays and matrices.

It also have a collection of high-level mathematical functions to operate on arrays.
It was created by Travis Oliphant in 2005.

Table of Content

« What is NumPy?

« Features of NumPy

« Install Python NumPy

« Arrays in NumPy

« NumPy Array Creation

« NumPy Array Indexing

« NumPy Basic Operations
o NumPy — Unary Operators
« NumPy — Binary Operators
« NymPy’s ufuncs

« NumPy Sorting Arrays

What is NumPy?

NumPy is a general-purpose array-processing package.

It provides a high-performance multidimensional array object and tools for working
with these arrays.

It is the fundamental package for scientific computing with Python. It is open-
source software.

Features of NumPy

NumPy has various features which make them popular over lists.
Some of these important features include:

« A powerful N-dimensional array object

« Sophisticated (broadcasting) functions

« Tools for integrating C/C++ and Fortran code

« Useful linear algebra, Fourier transform, and random number capabilities
Besides its obvious scientific uses, NumPy in Python can also be used as an
efficient multi-dimensional container of generic data.

Arbitrary data types can be defined using Numpy which allows NumPy to
seamlessly and speedily integrate with a wide variety of databases.

Install Python NumPy

Numpy can be installed for Mac and Linux users via the following pip command:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-programming-language/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

pip install numpy

Windows does not have any package manager analogous to that in Linux or
Mac. Please download the pre-built Windows installer for NumPy
from here (according to your system configuration and Python version). And then
install the packages manually.

Note: All the examples discussed below will not run on an online IDE.

Arrays in NumPy

NumPy’s main object is the homogeneous multidimensional array.

. Itis atable of elements (usually numbers), all of the same type, indexed by a
tuple of positive integers.

« In NumPy, dimensions are called axes. The number of axes is rank.

« NumPy’s array class is called ndarray. It is also known by the alias array.

Example:

In this example, we are creating a two-dimensional array that has the rank of 2 as

it has 2 axes.

The first axis(dimension) is of length 2, i.e., the number of rows, and the second

axis(dimension) is of length 3, i.e., the number of columns. The overall shape of

the array can be represented as (2, 3)

Python

Import numpy as np

Creating array object
arr = np.array([[1, 2, 3],
[4,2,5]])

Printing type of arr object
print("Array is of type: ", type(arr))

Printing array dimensions (axes)
print("No. of dimensions: ", arr.ndim)

Printing shape of array
print("Shape of array: ", arr.shape)

Printing size (total number of elements) of array
print("Size of array: ", arr.size)

Printing type of elements in array
print("Array stores elements of type: ", arr.dtype)

Output:

Array IS of type: <class 'numpy.ndarray'>
No. of dimensions: 2
Shape of array: (2, 3)

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
https://www.geeksforgeeks.org/numpy-ndarray/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Size of array: 6

Array stores elements of type: int64

NumPy Array Creation

There are various ways of Numpy array creation in Python. They are as follows:
1. Create NumPy Array with List and Tuple

You can create an array from a regular Python list or tuple using the array()

function. The type of the resulting array is deduced from the type of the elements

in the sequences. Let’s see this implementation:

Python

import numpy as np

Creating array from list with type float
a=np.array([[1, 2, 4], [5, 8, 7]], dtype = ‘float")
print ("Array created using passed list:\n", a)

Creating array from tuple
b =np.array((1, 3, 2))
print ("\nArray created using passed tuple:\n", b)

Output:

Array created using passed list:
[[1. 2. 4.]
[5. 8. 711

Array created using passed tuple:
[132]

2. Create Array of Fixed Size
Often, the element is of an array is originally unknown, but its size is known.
Hence, NumPy offers several functions to create arrays with initial placeholder
content.
This minimize the necessity of growing arrays, an expensive operation. For
example: np.zeros, np.ones, np.full, np.empty, etc.
To create sequences of numbers, NumPy provides a function analogous to the range
that returns arrays instead of lists.
Python
Creating a 3X4 array with all zeros
¢ = np.zeros((3, 4))
print ("An array initialized with all zeros:\n", c)

Create a constant value array of complex type
d = np.full((3, 3), 6, dtype = ‘complex’)
print ("An array initialized with all 6s."

"Array type is complex:\n", d)

Create an array with random values
e = np.random.random((2, 2))
print ("A random array:\n", e)

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-array-creation/
https://www.geeksforgeeks.org/python-set-3-strings-lists-tuples-iterations/
https://www.geeksforgeeks.org/python-tuples/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Output:

An array initialized with all Zeros:
[[O. 0. 0. 0.]
[0. 0. 0. 0.]
[O. 0. 0. 0.1

An array initialized with all 6s.Array type is complex:
[[6.40. 6.+0.j 6.+0.j]
[6.+0.j 6.+0.j 6.+0.j]
[6.+0.j 6.+0.] 6.+0.j1]

A random array:
[[0.15471821 0.47506745]

[0.03637972 0.15772238]]
3. Create Using arange() Function
arange(): This function returns evenly spaced values within a given
interval. Step size is specified.
Python
Create a sequence of integers
from 0 to 30 with steps of 5
f = np.arange(0, 30, 5)
print (A sequential array with steps of 5:\n", f)

Output:
A sequential array with steps of 5:
[0 5 10 15 20 25]

5. Create Using linspace() Function
linspace(): It returns evenly spaced values within a given interval.
Python
Create a sequence of 10 values in range 0 to 5
g = np.linspace(0, 5, 10)
print (A sequential array with 10 values between"

"0 and 5:\n", Q)
Output:
A sequential array with 10 values between0 and 5:
[O. 0.55555556 1.11111111 1.66666667 2.22222222 2.77777778

3.33333333 3.88888889 4.44444444 5.]
6. Reshaping Array using Reshape Method
Reshaping array: We can use reshape method to reshape an array.
Consider an array with shape (al, a2, a3, ..., aN). We can reshape and convert it
into another array with shape (b1, b2, b3, ..., bM). The only required condition is
al xa2xa3d ...xaN =Dbl xDb2xb3...xbM.(ie. the original size of the array
remains unchanged.)
Python
Reshaping 3X4 array to 2X2X3 array
arr = np.array([[1, 2, 3, 4],
[5, 2, 4, 2],
[1,2,0,1]])
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-arrange-in-python/
https://www.geeksforgeeks.org/numpy-linspace-python/
https://www.geeksforgeeks.org/reshape-numpy-array/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

newarr = arr.reshape(2, 2, 3)

print ("Original array:\n", arr)

print("'--------------- "

print ("Reshaped array:\n", newarr)

Output:

Original array:
[[1 2 3 4]
[5 2 4 2]
[1 2 0 11]

Reshaped array:
[[[1 2 3]
[4 5 2]]
[[4 2 1]
[201]]]

7. Flatten Array
Flatten array: We can use flatten method to get a copy of the array collapsed
into one dimension.
It accepts order argument. The default value is ????” (for row-major order). Use
22?7 for column-major order.
Python
Flatten array
arr = np.array([[1, 2, 3], [4, 5, 6]])
flat_arr = arr.flatten()

print ("Original array:\n", arr)
print ("Fattened array:\n", flat_arr)

Output:

Original array:
[1 2 3]
[4 5 611
Fattened array:
[123456]

Note: The type of array can be explicitly defined while creating the array.

NumPy Array Indexing

Knowing the basics of NumPy array indexing is important for analyzing and

manipulating the array object. NumPy in Python offers many ways to do array

indexing.

« Slicing: Just like lists in Python, NumPy arrays can be sliced. As arrays can
be multidimensional, you need to specify a slice for each dimension of the
array.

. Integer array indexing: In this method, lists are passed for indexing for each
dimension. One-to-one mapping of corresponding elements is done to construct
a new arbitrary array.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-indexing/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

« Boolean array indexing: This method is used when we want to pick
elements from the array which satisfy some condition.

Python

Python program to demonstrate

indexing in numpy

import numpy as np

An exemplar array

arr = np.array([[-1, 2, 0, 4],
[4,-0.5, 6, 0],
[2.6, 0, 7, 8],
[3,-7,4,2.0]])

Slicing array

temp = arr[:2, ::2]

print ("Array with first 2 rows and alternate™
"columns(0 and 2):\n", temp)

Integer array indexing example

temp = arr[[0, 1, 2, 3], [3, 2, 1, O]]

print ("\nElements at indices (0, 3), (1, 2), (2, 1),"
(3, 0):\n", temp)

boolean array indexing example

cond = arr > 0 # cond is a boolean array
temp = arr[cond]

print ("\nElements greater than 0:\n", temp)

Output:

Array with first 2 rows and alternatecolumns(0 and 2):
[[-1. 0.]
[4. 6.]

Elements at indices (O, 3), (1, 2), (2, 1),(3, 0):
[4, 6. 0. 3.]

Elements greater than 0:

[2. 4. 4. 6. 26 7. 8. 3. 4. 2.]
NumPy Basic Operations
The Plethora of built-in arithmetic functions is provided in Python NumPy.
1. Operations on a single NumPy array
We can use overloaded arithmetic operators to do element-wise operations on the
array to create a new array. In the case of +=, -=, *= operators, the existing array is
modified.
Python
Python program to demonstrate
basic operations on single array
Import numpy as np

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

a=np.array([1, 2, 5, 3])

add 1 to every element
print ("Adding 1 to every element:", a+1)

subtract 3 from each element
print ("Subtracting 3 from each element:", a-3)

multiply each element by 10
print ("Multiplying each element by 10:", a*10)

square each element
print ("Squaring each element:", a**2)

modify existing array
a*=2
print ("Doubled each element of original array:", a)

transpose of array
a=np.array([[1, 2, 3], [3, 4, 5], [9, 6, O]])

print ("\nOriginal array:\n", a)
print ("Transpose of array:\n", a.T)

Output:
Adding 1 to every element: [2 3 6 4]
Subtracting 3 from each element: [-2 -1 2 0]
Multiplying each element by 10: [10 20 50 30]
Squaring each element: [1 4 25 9]
Doubled each element of original array: [2 4 10 6]
Original array:
[[1 2 3]
[3 4 5]
[9 6 0]1]
Transpose of array:
[[1 3 9]
[2 4 6]
[350]]

NumPy — Unary Operators

Many unary operations are provided as a method of ndarray class. This includes
sum, min, max, etc. These functions can also be applied row-wise or column-wise
by setting an axis parameter.

Python

Python program to demonstrate

unary operators in numpy

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Import numpy as np

arr = np.array([[1, 5, 6],
[4,7,2],
[3. 1, 91D)

maximum element of array

print ("Largest element is:", arr.max())

print ("Row-wise maximum elements:",
arr.max(axis = 1))

minimum element of array
print ("Column-wise minimum elements:",
arr.min(axis = 0))

sum of array elements
print ("Sum of all array elements:",
arr.sum())

cumulative sum along each row
print ("Cumulative sum along each row:\n",
arr.cumsum(axis = 1))

Output:

Largest element is: 9
Row-wise maximum elements: [6 7 9]
Column-wise minimum elements: [1 1 2]
Sum of all array elements: 38
Cumulative sum along each row:
[[1 6 12]
[4 11 13]
[3 413]]

NumPy — Binary Operators

These operations apply to the array elementwise and a new array is created. You
can use all basic arithmetic operators like +, -, /, etc. In the case of +=, -=, =
operators, the existing array is modified.

Python

Python program to demonstrate

binary operators in Numpy

import numpy as np

a = np.array([[1, 2],

[3, 411)
b = np.array([[4, 3],

[2,111)

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

add arrays
print ("Array sum:\n", a + b)

multiply arrays (elementwise multiplication)
print ("Array multiplication:\n", a*b)

matrix multiplication

print ("Matrix multiplication:\n", a.dot(b))
Output:

Array

[[5

[5

Array

[[4

[6

Matrix

[l 8

[20 13]]

Also Read: Numpy Binary Operations
NymPy’s ufuncs

sum:
5]

5]]
multiplication:
6]

4]]
multiplication:
5]

NumPy provides familiar mathematical functions such as sin, cos, exp, etc. These
functions also operate elementwise on an array, producing an array as output.
Note: All the operations we did above using overloaded operators can be done

using ufuncs like np.add, np.subtract, np.multiply, np.divide, np.sum, etc.

Click & go th first page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-binary-operations/

Panda

Pandas Series is a one-dimensional labeled array capable of holding data of any
type (integer, string, float, python objects, etc.). The axis labels are collectively
called index. Labels need not be unique but must be a hashable type. The object
supports both integer and label-based indexing and provides a host of methods for
performing operations involving the index.

Python

Creating a Pandas Series

To create Series with any of the methods make sure to import pandas library.

Creating an empty Series: Series() function of Pandas is used to create a series.
A basic series, which can be created is an Empty Series.

Python3
import pandas as pd
import pandas as pd
Creating empty series

ser = pd.Series()

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-pandas-series/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print(ser)

Output :
Series([], dtype: float64)

By default, the data type of Series is float.

Creating a series from array: In order to create a series from NumPy array, we
have to import numpy module and have to use array() function.

. Python3

import pandas as pd

import pandas as pd

import numpy as np

import numpy as np

simple array

data = np.array(['g’, 'e', 'e', 'k, 's'])

ser = pd.Series(data)

print(ser)

Output:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

w X M M 0q

type: object

By default, the index of the series starts from O till the length of series -1.

Creating a series from array with an index: In order to create a series by
explicitly proving index instead of the default, we have to provide a list of elements
to the index parameter with the same number of elements as it is an array.

o Python3

import pandas as pd

import pandas as pd

import numpy as np

import numpy as np

simple array

data = np.array(['g’, 'e', 'e', 'k’, 's'])

providing an index

ser = pd.Series(data, index=[10, 11, 12, 13, 14])

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print(ser)

Output:
106
11
12
13
14
dtype: object

wn XM @M 09

Creating a series from Lists: In order to create a series from list, we have to first
create a list after that we can create a series from list.

o Python3

import pandas as pd

a simple list

list=T['g', 'e', 'e', 'K', 's]

create series form a list

ser = pd.Series(list)

print(ser)

Output :

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/creating-a-pandas-series-from-lists/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

w X M M 0q

type: object

Creating a series from Dictionary: In order to create a series from the dictionary,
we have to first create a dictionary after that we can make a series using dictionary.
Dictionary keys are used to construct indexes of Series.

Python3

import pandas as pd

a simple dictionary

dict = {'Geeks'": 10,

‘for": 20,

‘geeks': 30}

create series from dictionary

ser = pd.Series(dict)

print(ser)

Output:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/creating-a-pandas-series-from-dictionary/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Geeks 16
for 26
geeks 30

dtype: inté4

Creating a series from Scalar value: In order to create a series from scalar value,
an index must be provided. The scalar value will be repeated to match the length of
the index.

. Python3

import pandas as pd

import numpy as np

giving a scalar value with index

ser = pd.Series(10, index=[0, 1, 2, 3, 4, 5])

print(ser)
Output:

e 1@

1 1e

2 1@

3 18

4 10

5 18
dtype: inté4

Creating a series using NumPy functions : In order to create a series using numpy
function, we can use different function of numpy
like numpy.linspace(), numpy.random.radn().

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/create-pandas-series-using-numpy-functions/
https://www.geeksforgeeks.org/numpy-linspace-python/
https://www.geeksforgeeks.org/numpy-random-randn-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

o Python3

import pandas and numpy

import pandas as pd

import numpy as np

series with numpy linspace()

serl = pd.Series(np.linspace(3, 33, 3))

print(serl)

series with numpy linspace()

ser2 = pd.Series(np.linspace(1, 100, 10))

print(& quot

\n" , Ser2)

Output:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

%) 3.0
1 18.¢
2 33.9
dtype: floatéd

0 1.0
1 7
23.
34.
45,
56.
67.
78.
89.
166.¢
dtype: floatéd

W00~ U B W N e
OO0 OO0

Creating a Series using range function:

o Python3

code

import pandas as pd

ser=pd.Series(range(10))

print(ser)

Output:

~N o o A W N -, O
o o1 AW N

7

CLICK HERE 10 JOIN OUR WHAISAPFP GRUUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

8 8
9 9
dtype: int64

Creating a Series using for loop and list comprehension:

Python3

import pandas as pd

ser=pd.Series(range(1,20,3), index=[x for x in ‘abcdefg'])

print(ser)
Output:
a 1
b 4
c 7/
d 10
e 13
f 16
g 19
dtype: int64

Creating a Series using mathematical expressions:

Python3

import pandas as pd

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

import numpy as np
ser=np.arange(10,15)
serobj=pd.Series(data=ser*5,index=ser)

print(serobj)

Output:
10 50
11 55
12 60
13 65
14 70
dtype: int32

Click & go th first page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

ALT/AIZ LIRS A IATRAL ALIN WILIATAARNRD ARALIN

Function

Python Functions is a block of statements that return the specific task. The idea
Is to put some commonly or repeatedly done tasks together and make a function
so that instead of writing the same code again and again for different inputs, we
can do the function calls to reuse code contained in it over and over again.
Some .
Benefits of Using Functions

« Increase Code Readability

« Increase Code Reusability

Python Function Declaration
The syntax to declare a function is:

Keyword Function name Parameter

i t t

| 11 I |
def function_name(parameters):

Body of
Statement

H# statement] >

return expression

Function return

Syntax of Python Function Declaration
Types of Functions in Python

Below are the different types of functions in Python:
« Built-in library function: These are Standard functions in Python that are
available to use.
« User-defined function: We can create our own functions based on our
requirements.

Creating a Function in Python

We can define a function in Python, using the def keyword. We can add any type
of functionalities and properties to it as we require. By the following example, we

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-built-in-functions/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

can understand how to write a function in Python. In this way we can create
Python function definition by using def keyword.
Python
A simple Python function
def fun():
print("*Welcome to GFG")
Calling a Function in Python
After creating a function in Python we can call it by using the name of the
functions Python followed by parenthesis containing parameters of that particular
function. Below is the example for calling def function Python.
Python
A simple Python function
def fun():
print(*Welcome to GFG")

Driver code to call a function
fun()
Output:
Welcome to GFG
Python Function with Parameters
If you have experience in C/C++ or Java then you must be thinking about
the return type of the function and data type of arguments. That is possible in
Python as well (specifically for Python 3.5 and above).
Python Function Syntax with Parameters
def function_name(parameter: data_type) -> return_type:
"""Docstring"""
body of the function
return expression
The following example uses arguments and parameters that you will learn later in
this article so you can come back to it again if not understood.
Python
def add(num1: int, num2: int) -> int:
""Add two numbers™*"
num3 = numl + num2

return nums3

Driver code

numl, num2 =5, 15

ans = add(numl, numz2)

print(f*The addition of {num1} and {num2} results {ans}.")

Output:

The addition of 5 and 15 results 20.

Note: The following examples are defined using syntax 1, try to convert them in
syntax 2 for practice.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/deep-dive-into-parameters-and-arguments-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python
some more functions
def is_prime(n):
ifnin[2, 3]:
return True
if (n==1) or (n% 2==0):
return False

r=3
whiler * r<=n:
ifn%r==0:
return False
r+=2

return True
print(is_prime(78), is_prime(79))
Output:
False True

Python Function Arguments

Arguments are the values passed inside the parenthesis of the function. A function
can have any number of arguments separated by a comma.
In this example, we will create a simple function in Python to check whether the
number passed as an argument to the function is even or odd.
Python
A simple Python function to check
whether x is even or odd
def evenOdd(x):
if (x% 2 ==0):
print("even™)
else:
print(*odd")

Driver code to call the function
evenOdd(2)
evenOdd(3)
Output:
even
odd
Types of Python Function Arguments

Python supports various types of arguments that can be passed at the time of the
function call. In Python, we have the following function argument types in
Python:

o Default argument

. Keyword arguments (named arguments)

. Positional arguments

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

« Arbitrary arguments (variable-length arguments *args and **kwargs)
Let’s discuss each type in detail.

Default Arguments

A default argument is a parameter that assumes a default value if a value is not
provided in the function call for that argument. The following example illustrates
Default arguments to write functions in Python.
Python
Python program to demonstrate
default arguments
def myFun(x, y=50):
print("x: ", X)
print("y: ", y)

Driver code (We call myFun() with only
argument)
myFun(10)
Output:
X: 10
y: 50
Like C++ default arguments, any number of arguments in a function can have a
default value. But once we have a default argument, all the arguments to its right
must also have default values.
Keyword Arguments
The idea is to allow the caller to specify the argument name with values so that
the caller does not need to remember the order of parameters.
Python
Python program to demonstrate Keyword Arguments
def student(firstname, lastname):
print(firstname, lastname)

Keyword arguments

student(firstname='Geeks', lastname="Practice’)

student(lastname="Practice’, firstname='Geeks")

Output:

Geeks Practice
Geeks Practice

Positional Arguments

We used the Position argument during the function call so that the first argument
(or value) is assigned to name and the second argument (or value) is assigned to

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/keyword-and-positional-argument-in-python/#:~:text=age%20is%20%2020-,Positional%2DOnly%20Arguments,-Position%2Donly%20arguments

CLICK HERE TO JOIN OUR WHATSAPP GROUP

age. By changing the position, or if you forget the order of the positions, the values
can be used in the wrong places, as shown in the Case-2 example below, where
27 is assigned to the name and Suraj is assigned to the age.
Python
def nameAge(name, age):

print("Hi, I am", name)

print("My age is ", age)

You will get correct output because
argument is given in order
print("Case-1:")

nameAge("Suraj”, 27)

You will get incorrect output because
argument is not in order
print("\nCase-2:")

nameAge(27, "Suraj")

Output:
Case-1:
Hi, I am Suraj
My age IS 27
Case-2:
Hi, I am 27

My age is Suraj

Arbitrary Keyword Arguments

In Python Arbitrary Keyword Arguments, *args, and **kwargs can pass a
variable number of arguments to a function using special symbols. There are two
special symbols:

« *args in Python (Non-Keyword Arguments)

o **kwargs in Python (Keyword Arguments)
Example 1: Variable length non-keywords argument
Python
Python program to illustrate
*args for variable number of arguments
def myFun(*argv):

for arg in argv:

print(arg)

myFun('Hello', "Welcome', 'to’, 'GeeksforGeeks')
Output:

Hello

Welcome

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/args-kwargs-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

to

GeeksforGeeks

Example 2: Variable length keyword arguments
Python

Python program to illustrate

*kwargs for variable number of keyword arguments

def myFun(**kwargs):
for key, value in kwargs.items():
print("%s == %s" % (key, value))

Driver code
myFun(first='"Geeks', mid="for', last="Geeks')
Output:
first ==
mid ==
last == Geeks

Docstring

Geeks
for

The first string after the function is called the Document string or Docstring in
short. This is used to describe the functionality of the function. The use of

docstring in functions is optional but it is considered a good practice.
The below syntax can be used to print out the docstring of a function.

Syntax: print(function_name.__doc_)
Example: Adding Docstring to the function
Python

A simple Python function to check

whether x is even or odd

def evenOdd(x):

""" Function to check if the number is even or odd™""
if (x% 2 ==0):

print(“even")
else:

print(*odd")

Driver code to call the function
print(evenOdd. doc_)

Output:

Function to check if the number is even or odd
Python Function within Functions

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-docstrings/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

A function that is defined inside another function is known as the inner
function or nested function. Nested functions can access variables of the
enclosing scope. Inner functions are used so that they can be protected from
everything happening outside the function.

Python

Python program to

demonstrate accessing of

variables of nested functions

def f1():
s = 'l love GeeksforGeeks'

def f2():
print(s)

f2()

Driver's code

f1()

Output:

| love GeeksforGeeks

Anonymous Functions in Python

In Python, an anonymous function means that a function is without a name. As
we already know the def keyword is used to define the normal functions and the
lambda keyword is used to create anonymous functions.

Python

Python code to illustrate the cube of a number

using lambda function

def cube(x): return x*x*x

cube_v2 = lambda X : X*x*X

print(cube(7))
print(cube_v2(7))
Output:

343

343

Recursive Functions in Python

Recursion in Python refers to when a function calls itself. There are many
instances when you have to build a recursive function to solve Mathematical and
Recursive Problems.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-lambda-anonymous-functions-filter-map-reduce/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Using a recursive function should be done with caution, as a recursive function
can become like a non-terminating loop. It is better to check your exit statement
while creating a recursive function.
Python
def factorial(n):
ifn==0:
return 1
else:
return n * factorial(n - 1)

print(factorial(4))

Output

24

Here we have created a recursive function to calculate the factorial of the number.
You can see the end statement for this function is when n is equal to O.

Return Statement in Python Function

The function return statement is used to exit from a function and go back to the
function caller and return the specified value or data item to the caller. The syntax
for the return statement is:
return [expression_list]
The return statement can consist of a variable, an expression, or a constant which
Is returned at the end of the function execution. If none of the above is present
with the return statement a None object is returned.
Example: Python Function Return Statement
Python
def square_value(num):

"""This function returns the square

value of the entered number'"

return num**2

print(square_value(2))
print(square_value(-4))
Output:

4

16

Pass by Reference and Pass by Value

One important thing to note is, in Python every variable name is a reference. When
we pass a variable to a function Python, a new reference to the object is created.
Parameter passing in Python is the same as reference passing in Java.

Python

Here x is a new reference to same list Ist

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

def myFun(x):
x[0] = 20

Driver Code (Note that Ist is modified

after function call.

Ist = [10, 11, 12, 13, 14, 15]

myFun(lst)

print(lst)

Output:

[20, 11, 12, 13, 14, 15]

When we pass a reference and change the received reference to something else,
the connection between the passed and received parameters is broken. For
example, consider the below program as follows:

Python

def myFun(x):

After below line link of X with previous

object gets broken. A new object is assigned
to X.

x = [20, 30, 40]

Driver Code (Note that Ist is not modified
after function call.

Ist = [10, 11, 12, 13, 14, 15]

myFun(lst)

print(lst)

Output:

[10, 11, 12, 13, 14, 15]

Another example demonstrates that the reference link is broken if we assign a new
value (inside the function).

Python

def myFun(x):

After below line link of X with previous

object gets broken. A new object is assigned
1o X.

x=20

Driver Code (Note that x is not modified

after function call.

x=10

myFun(x)

print(x)

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Output:
10
Exercise: Try to guess the output of the following code.
Python
def swap(X, y):
temp = X
X=Yy
y = temp

Driver code
X=2
y=3
swap(x, y)
print(x)
print(y)
Output:
2
3
Quick Links
« Quiz on Python Functions
. Difference between Method and Function in Python
« First Class functions in Python
« Recent articles on Python Functions.
FAQs- Python Functions
What is function in Python?
Python function is a block of code, that runs only when it is called. It is
programmed to return the specific task. You can pass values in functions called
parameters. It helps in performing repetitive tasks.

What are the 4 types of Functions in Python?
The main types of functions in Python are:
« Built-in function
« User-defined function
« Lambda functions
« Recursive functions

How to Write a Function in Python?
To write a function in Python you can use the def keyword and then write the
function name. You can provide the function code after using ‘:’. Basic syntax to
define a function is:
def function_name():

#statement

What are the parameters of a function in Python?
Parameters in Python are the variables that take the values passed as arguments
when calling the functions. A function can have any number of parameters. You
can also set default value to a parameter in Python.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/functions-python-gq/
https://www.geeksforgeeks.org/difference-method-function-python/
https://www.geeksforgeeks.org/first-class-functions-python/
https://www.geeksforgeeks.org/tag/python-functions/
https://www.geeksforgeeks.org/types-of-functions/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

What is Python main function?
The Python main function refers to the entry point of a Python program. It is often
defined using the if _name__ ==" main__": construct to ensure that certain
code is only executed when the script is run directly, not when it is imported as a
module.

Click & go th first page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

Array

What is an Array in Python?

An array is a collection of items stored at contiguous memory locations. The idea
is to store multiple items of the same type together. This makes it easier to
calculate the position of each element by simply adding an offset to a base value,
I.e., the memory location of the first element of the array (generally denoted by
the name of the array).

e Element
First index (at index 8)

Indices

44— Arraylengthis10 ——p

Create an Array in Python

Array in Python can Dbe created by importing an array
module. array(data_type, value_list) is used to create array in Python with data
type and value list specified in its arguments.
In below code Python create array : one of integers and one of doubles. It then
prints the contents of each array to the console.
Python
import array as arr
a=arrarray('i', [1, 2, 3])
print("*The new created array is : "', end="")
for i in range(0, 3):
print(a[i], end="")
print()
b = arr.array('d’, [2.5, 3.2, 3.3])
print("\nThe new created array is : ', end="")
for i in range(0, 3):
print(b[i], end="")

Output
The new created array is: 123

ALV IN T INNL TV JULIN VUIN VWIIA T YN T YNV UL

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

The new created array is: 2.53.2 3.3

Complexities for Creation of Arrays:
TimeComplexity: O(1)
Auxiliary Space: O(n)
Some of the data types are mentioned below which will help in create array in
Python 3.8
of different data types.

Python Type .

Minimum Size In
Bytes
b [sigedaanar [int
8 | unsignedchar |
unicode
| u | y.uNicooe sharater
b | snedshot | i
It
e e e e

int
nt
nt
nt
nt
nt
nt
nt

lul
lhl
'H
ILI
lql
r.r?t

Now we will see how to use array in Python 3.8 with example.
Adding Elements to a Array

Elements can be added to the Python Array by using built-in insert() function.
Insert is used to insert one or more data elements into an array. Based on the
requirement, a new element can be added at the beginning, end, or any given index
of array. append() is also used to add the value mentioned in its arguments at the
end of the Python array.

3.2, 3.3] is created and printed before and after appending the double 4.4 to the
array.

Python

import array as arr

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-insert/
https://www.geeksforgeeks.org/append-extend-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

a=arrarray('', [1, 2, 3])
print("Array before insertion : ", end="")
for i in range(0, 3):

print(a[i], end="")
print()
a.insert(1, 4)
print("Array after insertion : ", end="")
foriin (a):

print(i, end="")
print()
b = arr.array('d', [2.5, 3.2, 3.3])
print("Array before insertion : ", end="")
for i in range(0, 3):

print(b[i], end="")
print()
b.append(4.4)
print("Array after insertion : ", end="")
for i in (b):

print(i, end="")
print()

Output
Array before insertion: 123

Array after insertion: 1423
Array before insertion: 2.53.2 3.3

Array after insertion : 2.53.23.34.4

Complexities for Adding elements to the Arrays
Time Complexity: O(1)/O(n) (O(1) — for inserting elements at the end of the
array, O(n) — for inserting elements at the beginning of the array and to the full

array
Auxiliary Space: O(1)
Accessing Elements from the Array

In order to access the array items refer to the index number. Use the index operator
[] to access an item in a array in Python. The index must be an integer.

Below, code shows first how to Python import array and use of indexing to access
elements in arrays. The a[0] expression accesses the first element of the array a,
which is 1. The a[3] expression accesses the fourth element of the array a, which
is 4. Similarly, the b[1] expression accesses the second element of the array b,
which is 3.2, and the b[2] expression accesses the third element of the array b,

which is 3.3.
Python
import array as arr

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

a=arrarray('', [1, 2, 3,4, 5, 6])
print("Access element is: ", a[0])
print("Access element is: ", a[3])
b = arr.array('d', [2.5, 3.2, 3.3])

print("Access element is: ", b[1])
print("Access element is: ", b[2])

Output
Access element is: 1

Access element is; 4
Access element is; 3.2

Access element is: 3.3

Complexities for accessing elements in the Arrays
Time Complexity: O(1)
Auxiliary Space: O(1)

Removing Elements from the Array

Elements can be removed from the Python array by using built-
in remove() function but an Error arises if element doesn’t exist in the set.
Remove() method only removes one element at a time, to remove range of
elements, iterator is used. pop() function can also be used to remove and return an
element from the array, but by default it removes only the last element of the
array, to remove element from a specific position of the array, index of the
element is passed as an argument to the pop() method.
Note — Remove method in List will only remove the first occurrence of the
searched element.
Below, code shows how to Python import array, how to create, print, remove
elements from, and access elements of an array in Python. It imports
the array module, which is used to work with arrays. It creates an array of integers
in and Python print arrays or prints the original array. It then removes an element
from the array and prints the modified array. Finally, it removes all occurrences
of a specific element from the array and prints the updated array
Python
import array
arr = array.array('i', [1, 2, 3, 1, 5])
print("The new created array is : ", end=""")
for i in range(0, 5):

print(arr[i], end="")

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-remove/
https://www.geeksforgeeks.org/python-list-pop/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print("\r')
print("The popped element is : ", end="")
print(arr.pop(2))
print("The array after popping is : ", end="")
for i in range(0, 4):

print(arr[i], end="")

print("\r")
arr.remove(1)
print("The array after removing is : ", end="")
for i in range(0, 3):
print(arr[i], end="")

Output
The new created array is: 12315

The popped element is : 3
The array after poppingis:1215
The array after removingis: 215

Complexities for Removing elements in the Arrays
Time Complexity: O(1)/O(n) (O(1) — for removing elements at the end of the
array, O(n) — for removing elements at the beginning of the Python create array
and to the full array
Auxiliary Space: O(1)

Slicing of an Array

In Python array, there are multiple ways to print the whole array with all the
elements, but to print a specific range of elements from the array, we use Slice
operation. Slice operation is performed on array with the use of colon(:). To print
elements from beginning to a range use [:Index], to print elements from end use
[:-Index], to print elements from specific Index till the end use [Index:], to print
elements within a range, use [Start Index:End Index] and to print whole List with
the use of slicing operation, use [:]. Further, to print whole array in reverse order,
use [::-1].

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-comprehension-and-slicing/
https://www.geeksforgeeks.org/python-list-comprehension-and-slicing/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Start: End with indexes to print Range
Default
Beginning

1. e (24 Slicing from here till end
of Sequence =

]
Default End
of Sequence

Slicing from here till beginning — .
Slicing from here till beginning Reverse String by using [: :-1]

This code employs slicing to extract elements or subarrays from an array. It starts
with an initial array of integers and creates an array from the list. The code slices
the array to extract elements from index 3 to 8, from index 5 to the end, and the
entire array and In below code Python print array as The sliced arrays are then
printed to demonstrate the slicing operations.

Python

import array as arr

1=11,2,3,4,5,6,7,8,9, 10]

a=arrarray('i', I)
print("Initial Array: ")
for i in (a):
print(i, end="")
Sliced_array = a[3:8]
print(*\nSlicing elements in a range 3-8: ")
print(Sliced_array)
Sliced_array = a[5:]
print("\nElements sliced from 5th "
"element till the end: ™)
print(Sliced_array)
Sliced_array = a[:]
print("\nPrinting all elements using slice operation: ")
print(Sliced_array)

Output
Initial Array:

12345678910

Slicing elements in a range 3-8:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

array('i', [4, 5, 6, 7, 8])

Elements sliced from 5th element till the end:

array('i', [6, 7, 8, 9, 10])

Printing all elements...
Searching Element in an Array

In order to search an element in the array we use a python in-built index() method.
This function returns the index of the first occurrence of value mentioned in
arguments.
Example: The code demonstrates how to create array in Python, print its
elements, and find the indices of specific elements. It imports the array module,
creates an array of integers, prints the array using a for loop, and then uses
the index() method to find the indices of the first occurrences of the integers 2 and
1.
Python
import array
arr = array.array('i', [1, 2, 3, 1, 2, 5])
print("The new created array is : ", end="")
for i in range(0, 6):

print(arr[i], end="")

print("\r')

print("The index of 1st occurrence of 2 is : ", end="")
print(arr.index(2))

print(*The index of 1st occurrence of 1is: ", end="")
print(arr.index(1))

Output
The new created array is: 123125

The index of 1st occurrence of 2is: 1
The index of 1st occurrence of 1is: 0

Complexities for searching elements in the Arrays
Time Complexity: O(n)
Auxiliary Space: O(1)
Updating Elements in a Array

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-index/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In order to update an element in the array we simply reassign a new value to the
desired index we want to update.
Example: This code illustrates the functionality of modifying elements within an
array using indexing. It imports the array module, creates an array of integers, and
prints the initial array. Then, it modifies two elements of the array at specific
indexes and prints the updated array. This serves to demonstrate how indexing
allows for dynamic manipulation of array contents.
Python
import array
arr = array.array('i', [1, 2, 3, 1, 2, 5])
print("Array before updation : ", end="")
for i in range(0, 6):

print(arr[i], end="")

print("\r")
arr[2] =6
print("Array after updation : ", end=""")
for i in range(0, 6):
print(arr[i], end="")
print()
arr[4] =8
print("Array after updation : ", end=""")
for i in range(0, 6):
print(arr[i], end="")

Output
Array before updation: 123125

Array after updation: 126125
Array after updation: 126185

Complexities for updating elements in the Arrays
Time Complexity: O(1)
Auxiliary Space: O(1)

Reversing Elements in a Array

In order to reverse elements of an array we need to simply use reverse method.
Example: The presented code demonstrates the functionality of reversing the
order of elements within an array using the reverse() method. It imports
the array module, creates an array of integers, prints the original array, reverses
the order of elements using reverse(), and then prints the reversed array. This
effectively illustrates the ability to modify the arrangement of elements in an
array.

Python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

import array

my_array = array.array('i', [1, 2, 3, 4, 5])
print("Original array:", *my_array)
my_array.reverse()

print("Reversed array:", *my_array)

Output
Original array: 12345

Reversed array: 54321

Complexities for reversing elements in the Arrays:
Time Complexity: O(n)
Auxiliary Space: O(1)

Extend Element from Array

In the article, we will cover the python list extend() and try to understand
the Python list extend().

What is extend element from array?
In Python, an array is used to store multiple values or elements of the same
datatype in a single variable. The extend() function is simply used to attach an
item from iterable to the end of the array. In simpler terms, this method is used to
add an array of values to the end of a given or existing array.

Syntax of list extend()
The syntax of the extend() method:
list.extend(iterable)

Here, all the element of iterable are added to the end of listl

Example 1:

The provided code demonstrates the capability of extending an array to include
additional elements. It imports the array module using an alias, creates an array
of integers, prints the array before extension, extends the array using
the extend() method, and finally prints the extended array. This concisely
illustrates the ability to add elements to an existing array structure

Python

Import array as arr

a=arrarray('i', [1, 2, 3,4,5])

print("The before array extend : ", end ="")

for i in range (0, 5):

print (a[i], end =" ")

print()
a.extend([6,7,8,9,10])
print("\nThe array after extend :",end="")

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

for i in range(0,10):
print(a[i],end="")
print()

Output
The before array extend : 12345

The array after extend: 12345678910

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

LTl LUEDE TN INTA. ALID \WWLUATCADD mDNILID

Dictionary

A Python dictionary is a data structure that stores the value in key:value pairs.
Example:

Python dictionaries are essential for efficient data mapping and manipulation in
programming. To deepen your understanding of dictionaries and explore
advanced techniques in data handling, consider enrolling in our Complete
Machine Learning & Data Science Program . This course covers everything
from basic dictionary operations to advanced data processing methods,
empowering you to become proficient in Python programming and data analysis.
Python

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}

print(Dict)

Output:

{1: '‘Geeks', 2: ‘For’, 3: '‘Geeks'}

Python Dictionary Syntax
dict_var = {keyl : valuel, key?2 : value2,}
What is a Dictionary in Python?

Dictionaries in Python is a data structure, used to store values in key:value format.
This makes it different from lists, tuples, and arrays as in a dictionary each key
has an associated value.

Note: As of Python version 3.7, dictionaries are ordered and can not contain
duplicate keys.

How to Create a Dictionary

In Python , a dictionary can be created by placing a sequence of elements within
curly {} braces, separated by a ‘comma’.

The dictionary holds pairs of values, one being the Key and the other
corresponding pair element being its Key:value .

Values in a dictionary can be of any data type and can be duplicated, whereas keys
can’t be repeated and must be immutable .

Note — Dictionary keys are case sensitive, the same name but different cases of
Key will be treated distinctly.

The code demonstrates creating dictionaries with different types of keys. The first
dictionary uses integer keys, and the second dictionary uses a mix of string and
integer keys with corresponding values. This showcases the flexibility of Python
dictionaries in handling various data types as keys.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://gfgcdn.com/tu/Q3A/
https://gfgcdn.com/tu/Q3A/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}
print(*\nDictionary with the use of Integer Keys: ™)
print(Dict)

Dict = {'Name": 'Geeks', 1: [1, 2, 3, 4]}
print(*\nDictionary with the use of Mixed Keys: ")

print(Dict)

Output

Dictionary with the use of Integer Keys:
{1: '‘Geeks', 2: ‘For’, 3: '‘Geeks'}
Dictionary with the use of Mixed Keys:
{'Name": ‘Geeks', 1 [1, 2, 3, 41}

Dictionary Example
A dictionary can also be created by the built-in function dict(). An empty
dictionary can be created by just placing curly braces{}.

Different Ways to Create a Python Dictionary

The code demonstrates different ways to create dictionaries in Python. It first
creates an empty dictionary, and then shows how to create dictionaries using
the dict() constructor with key-value pairs specified within curly braces and as a
list of tuples.

Python

Dict = {}

print("Empty Dictionary: ™)

print(Dict)

Dict = dict({1: 'Geeks', 2: 'For', 3: 'Geeks'})
print(*\nDictionary with the use of dict(): ")
print(Dict)

Dict = dict([(1, 'Geeks", (2, 'For)])
print("*\nDictionary with each item as a pair: ")

print(Dict)

Output:

Empty Dictionary:
{

Dictionary with the use of dict():
{1: 'Geeks', 2: 'For’, 3: 'Geeks'}
Dictionary with each item as a pair:
{1: '‘Geeks', 2: ‘For'}

Complexities for Creating a Dictionary:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Adding Elements to a Dictionary

The addition of elements can be done in multiple ways. One value at a time can
be added to a Dictionary by defining value along with the key e.g. Dict[Key] =
‘Value’.

Updating an existing value in a Dictionary can be done by using the built-
in update() method. Nested key values can also be added to an existing
Dictionary.

Note- While adding a value, if the key-value already exists, the value gets updated
otherwise a new Key with the value is added to the Dictionary.

Example: Add Items to a Python Dictionary with Different DataTypes

The code starts with an empty dictionary and then adds key-value pairs to it. It
demonstrates adding elements with various data types, updating a key’s value,
and even nesting dictionaries within the main dictionary. The code shows how to
manipulate dictionaries in Python.

Python

Dict = {}

print("Empty Dictionary: ")

print(Dict)

Dict[0] = 'Geeks'

Dict[2] = 'For’

Dict[3] = 1

print("\nDictionary after adding 3 elements: ")

print(Dict)

Dict['Value_set] =2, 3, 4
print("*\nDictionary after adding 3 elements: ™)
print(Dict)

Dict[2] = 'Welcome'

print("*\nUpdated key value: ")

print(Dict)

Dict[5] = {'Nested": {'1": 'Life’, '2": 'Geeks'}}
print("\nAdding a Nested Key: ")

print(Dict)

Output:

Empty Dictionary:
{

Dictionary after adding 3 elements:
{0: 'Geeks', 2: 'For’, 3: 1}
Dictionary after adding 3 elements:
{0: '‘Geeks', 2: 'For’, o 1, ‘Value_set" (2, g 4}
Updated key value:
{0: 'Geeks', 2: 'Welcome', 3: 1, ‘'Value_ set: (2, 3, 4)}
Adding a Nested Key:

{0: 'Geeks', 2: ‘'Welcome', 3: 1, ‘'Value set: (2, 3, 4), 5:
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

{'Nested": {1 ‘Life’, 2" '‘Geeks'}}}

Complexities for Adding Elements in a Dictionary:
« Time complexity: O(1)/O(n)
« Space complexity: O(1)

Accessing Elements of a Dictionary

To access the items of a dictionary refer to its key name. Key can be used inside
square brackets.
Access a Value in Python Dictionary
The code demonstrates how to access elements in a dictionary using keys. It
accesses and prints the values associated with the keys ‘name’ and 1, showcasing
that keys can be of different data types (string and integer).
Python
Dict = {1: 'Geeks', 'name": 'For', 3: 'Geeks'}
print("Accessing a element using key:")
print(Dict['name'])
print("Accessing a element using key:")
print(Dict[1])

Output:

Accessing a element using key:
For

Accessing a element using key:
Geeks

There is also a method called get() that will also help in accessing the element
from a dictionary. This method accepts key as argument and returns the value.
Complexities for Accessing elements in a Dictionary:

« Time complexity: O(1)

« Space complexity: O(1)

Access a Value in Dictionary using get() in Python

The code demonstrates accessing a dictionary element using the get() method
Dict = {1: 'Geeks', 'name": 'For’, 3: 'Geeks'}

print("Accessing a element using get:")

print(Dict.get(3))

Output:

Accessing a element using get:
Geeks

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/get-method-dictionaries-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Accessing an Element of a Nested Dictionary

To access the value of any key in the nested dictionary, use indexing [] syntax.
Dict = {'Dictl"; {1: 'Geeks'},
'Dict2": {'Name": 'For'}}

print(Dict['Dict1)

print(Dict['Dict1[1])

print(Dict['Dict2']['Name'])

Output:

{1: '‘Geeks'}
Geeks

For

Deleting Elements using ‘del’ Keyword

The items of the dictionary can be deleted by using the del keyword as given
below.

Dict = {1: 'Geeks', 'name'": 'For’, 3: 'Geeks'}

print("Dictionary ="

print(Dict)

del(Dict[1])

print("Data after deletion Dictionary=")

print(Dict)

Output

Dictionary ={1: 'Geeks', 'name’: 'For’, 3: 'Geeks'}
Data after deletion Dictionary={'name’: ‘For’, 3: '‘Geeks'}

Dictionary Methods

Here is a list of in-built dictionary functions with their description.

Method Description

Remove all the elements from

dict.clear() the dictionary

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Method

dict.copy()

dict.get(key, default = “None”)

dict.items()

dict.keys()

dict.update(dict2)

dict.values()

pop()

popltem()

dict.setdefault(key,default= “None”)

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Description

Returns a copy of the
dictionary

Returns the value of specified
key

Returns a list containing a
tuple for each key value pair

Returns a list containing
dictionary’s keys

Updates dictionary with
specified key-value pairs

Returns a list of all the values
of dictionary

Remove the element with
specified key

Removes the last inserted
key-value pair

set the key to the default
value if the key is not

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Method

dict.has_key(key)

Description

specified in the dictionary

returns true if the dictionary
contains the specified key.

-Click go to First page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

List

In Python, a list is a collection data type that is ordered, mutable, and allows duplicate
elements. Lists are one of the most commonly used data structures and provide a
versatile way to work with sequences of elements. Here is a detailed explanation of
lists in Python:

Creating a List

You can create a list by placing elements inside square brackets [], separated by
commas.

Creating a list with different types of elements
my_list =[1, 2, 3, "apple"”, "banana", 4.5, True]
print(my_list)

Accessing Elements

You can access elements in a list using indexing. Python uses zero-based indexing,
meaning the first element has an index of 0

Accessing the first element
print(my_list[0]) # Output: 1

Accessing the fourth element
print(my_list[3]) # Output: apple

Accessing the last element
print(my_list[-1]) # Output: True
Slicing a List

You can retrieve a subset of a list by using slicing. Slicing is done using the colon :
operator.

Slicing from index 1 to 4 (excluding index 4)
print(my_list[1:4]) # Output: [2, 3, 'apple’]

Slicing from the beginning to index 3 (excluding index 3)
print(my_list[:3]) # Output: [1, 2, 3]

Slicing from index 2 to the end
print(my_list[2:]) # Output: [3, 'apple’, 'banana’, 4.5, True]
Modifying Elements

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Since lists are mutable, you can change their elements.

Changing the second element

my_list[1] = "orange"

print(my_list) # Output: [1, 'orange’, 3, ‘apple’, 'banana’, 4.5, True]
Adding Elements

You can add elements to a list using methods like append(), insert(), and extend().

Appending an element to the end of the list
my_list.append(*“grape™)
print(my_list) # Output: [1, 'orange’, 3, ‘apple’, 'banana’, 4.5, True, 'grape’]

Inserting an element at a specific index
my_list.insert(2, "cherry")
print(my_list) # Output: [1, 'orange’, ‘cherry’, 3, 'apple’, 'banana’, 4.5, True, 'grape’]

Extending the list with another list
my_list.extend([7, 8, 9])
print(my_list) # Output: [1, 'orange’, ‘cherry’, 3, ‘apple’, 'banana’, 4.5, True, 'grape’, 7,
8, 9]
Removing Elements

You can remove elements from a list using methods like remove(), pop(), and del.

Removing a specific element by value
my_list.remove("banana™)
print(my_list) # Output: [1, 'orange’, ‘cherry’, 3, ‘apple’, 4.5, True, 'grape’, 7, 8, 9]

Removing an element by index

my_list.pop(3)
print(my_list) # Output: [1, 'orange’, ‘cherry’, ‘apple’, 4.5, True, 'grape’, 7, 8, 9]

Removing the last element

my_list.pop()
print(my_list) # Output: [1, ‘orange’, ‘cherry’, ‘apple’, 4.5, True, ‘grape’, 7, 8]

Deleting an element by index using "del

del my_list[2]

print(my_list) # Output: [1, ‘orange’, ‘apple’, 4.5, True, 'grape’, 7, 8]
List Comprehensions

List comprehensions provide a concise way to create lists. They consist of brackets
containing an expression followed by a for clause.

python
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Copy code

Creating a list of squares from 0to 9

squares = [x**2 for x in range(10)]

print(squares) # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Common List Methods

« append(x): Add an item to the end of the list.

. extend(iterable): Extend the list by appending all the items from the iterable.

« insert(i, x): Insert an item at a given position.

« remove(x): Remove the first item from the list whose value is equal to x.

« pop([i]): Remove the item at the given position in the list and return it.

« clear(): Remove all items from the list.

« index(x[, start[, end]]): Return the index in the list of the first item whose value
Is equal to x.

« count(x): Return the number of times x appears in the list.

« sort(key=None, reverse=False): Sort the items of the list in place.

« reverse(): Reverse the elements of the list in place.

« copy(): Return a shallow copy of the list.

Lists are powerful and versatile, making them a fundamental part of Python
programming.

Difference Between List and Array Iin
Python

List Array
Can consist of elements belonging Only consists of elements belonging to
to different data types the same data type
No need to explicitly import a Need to explicitly import
module for the declaration the array module for declaration
Cannot directly handle arithmetic Can directly handle arithmetic
operations operations

Preferred for a shorter sequence of Preferred for a longer sequence of data
data items items

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

List

Greater flexibility allows easy
modification (addition, deletion) of
data

The entire list can be printed
without any explicit looping

Consume larger memory for easy
addition of elements

Nested lists can be of variable size

Can perform direct operations
using functions like:
count() — for counting a particular
element in the list
sort() — sort the complete list
max() — gives maximum of the list
min() — gives minimum of the list
sum() — gives sum of all the
elements in list for integer list
index() — gives first index of the
element specified
append() — adds the element to the
end of the list
remove() — removes the element
specified
No need to import anything to use
these functions.
and many more...

Example:
my_list = [1, 2, 3, 4]

-Go to first page

Array

Less flexibility since addition, and
deletion has to be done element-wise

A loop has to be formed to print or
access the components of the array

Comparatively more compact in
memory size

Nested arrays has to be of same size.

Need to import proper modules to
perform these operations.

Example:
import array
arr = array.array(‘i’, [1, 2, 3])

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
/
/

Control flow loop

Python While Loop

Until a specified criterion is true, a block of statements will be continuously
executed in a Python while loop. And the line in the program that follows the loop
is run when the condition changes to false.

Syntax of Python While
while expression:

statement(s)

In Python, all the statements indented by the same number of character spaces after
a programming construct are considered to be part of a single block of code. Python
uses indentation as its method of grouping statements.

Python3

prints Hello Geek 3 Times
count=0
while (count < 3):

count = count+1

print("Hello Geek™)

Output:
Hello Geek

Hello Geek
Hello Geek

See this for an example where a while loop is used for iterators. As mentioned in
the article, it is not recommended to use a while loop for iterators in python.

Python for Loop

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/using-iterations-in-python-effectively/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In Python, there is no C style for loop, i.e.,

loop which is similar to for each loop in other languages.

Syntax of Python for Loop

for iterator_var in sequence:
statements(s)

It can be used to iterate over iterators and a range.

Python3

Iterating over a list
print(“List Iteration")

| = ["geeks", "for", "geeks"]
foriinl:

print(i)

lterating over a tuple (immutable)
print("*\nTuple Iteration™)

t = ("geeks", "for", "geeks")
foriint:

print(i)

CLICK HERE TO JOIN OUR WHATSAPP GROUP

There is a “for in”

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/g-fact-40-foreach-in-c-and-java/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Iterating over a String
print("\nString Iteration")
s = "Geeks"

foriins:

print(i)

Iterating over dictionary
print("\nDictionary Iteration")
d = dict()

d['xyz'] =123

d['abc’] = 345

foriind:

print(*"%s %d" %(i, d[i]))

Output:
List Iteration

geeks
for

geeks

Tuple Iteration

geeks

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

for

geeks

String Iteration
G
e
e
k

S

Dictionary Iteration

xXyz 123
abc 345
Time complexity: O(n), where n is the number of elements in the iterable (list,
tuple, string, or dictionary).

Auxiliary space: O(1), as the space used by the program does not depend on the
size of the iterable.
We can use a for-in loop for user-defined iterators. See this for example.

Python Nested Loops

Python programming language allows using one loop inside another loop. The
following section shows a few examples to illustrate the concept.

Syntax of Python Nested for Loop

The syntax for a nested for loop statement in Python programming language is as
follows:

for iterator_var in sequence:
for iterator_var in sequence:
statements(s)

statements(s)

Syntax of Python Nested while Loop

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/iterators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

The syntax for a nested while loop statement in Python programming language is
as follows:

while expression:
while expression:
statement(s)
statement(s)
A final note on loop nesting is that we can put any type of loop inside of any other

type of loop. For example, a for loop can be inside a while loop or vice versa.

Python3

from __ future__ import print_function
for i in range(1, 5):
for j in range(i):
print(i, end=""

print()

Output:
1

22
333
4444

Python Loop Control Statements

Loop control statements change execution from their normal sequence. When
execution leaves a scope, all automatic objects that were created in that scope are
destroyed. Python supports the following control statements.

Python Continue

It returns the control to the beginning of the loop.

Python3

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Prints all letters except 'a' and 'u'
for letter in 'gautam':
if letter == "a’ or letter =="u".
continue

print(‘Current Letter :', letter)

Output:
Current Letter : g

Current Letter : t
Current Letter : m

Python Break

It brings control out of the loop.

. Python3

for letter in 'geeksforgeeks'

break the loop as soon it sees 'e'
#or's
if letter =="e' or letter =="'s":

break

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print('Current Letter :', letter)

Output:
Current Letter : e

Python Pass

We use pass statements to write empty loops. Pass is also used for empty control
statements, functions, and classes.

o Python3

An empty loop
for letter in 'geeksforgeeks':
pass

print('Last Letter :', letter)

Output:
Last Letter : s

Click to go in front page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

Control Flow : Conditional block

In both real life and programming, decision-making is crucial. We often face
situations where we need to make choices, and based on those choices, we
determine our next actions. Similarly, in programming, we encounter scenarios
where we must make decisions to control the flow of our code.

Conditional statements in Python play a key role in determining the direction of
program execution. Among these, If-Else statements are fundamental, providing a
way to execute different blocks of code based on specific conditions. As the name
suggests, If-Else statements offer two paths, allowing for different outcomes
depending on the condition evaluated.

Types of Control Flow in Python

« Python If Statement

« Python If Else Statement

« Python Nested If Statement

« Python Elif

. Ternary Statement | Short Hand If Else Statement

Python If Statement
The if statement is the most simple decision-making statement. It is used to decide
whether a certain statement or block of statements will be executed or not.

Flowchart of If Statement
Let’s look at the flow of code in the Python If statements.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/conditional-statements-in-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

False _

Test Expression

Body of if

:

Statement just
below if

l

Flowchart of Python if statement

Syntax of If Statement in Python
Here, the condition after evaluation will be either true or false. if the statement
accepts boolean values — if the value is true then it will execute the block of
statements below it otherwise not.
#if syntax Python

if condition:
Statements to execute if
condition is true

As we know, Python uses indentation to identify a block. So the block under the

Python if statements will be identified as shown in the below example:

if condition:
statementl

statement2

Here if the condition IS true, if block

will consider only statementl to be inside

its block.

Example of Python if Statement
As the condition present in the if statements in Python is false. So, the block below
the if statement is executed.
Python
python program to illustrate If statement
i =10

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/indentation-in-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

if (i > 15):
print(*10 is less than 15")
print("l am Not in if")
Output:
| am Not in if
Python If Else Statement
The if statement alone tells us that if a condition is true it will execute a block of
statements and if the condition is false it won’t. But if we want to do something
else if the condition is false, we can use the else statement with the if statement
Python to execute a block of code when the Python if condition is false.
Flowchart of If Else Statement
Let’s look at the flow of code in an if else Python statement.

Test Expression

False

Body of if Body of else

I

Statement just below if

!

Syntax of If Else in Python
if(condition):

#Executesthisblockif

#conditionistrue
else:

#Executesthisblockif

condition is false

Example of Python If Else Statement

The block of code following the else if in Python, the statement is executed as the
condition present in the if statement is false after calling the statement which is not
in the block(without spaces).

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python
python program to illustrate else if in Python statement
#!1/usr/bin/python

i=20
if (i < 15):
print("i is smaller than 15")
print("i'm in if Block™)
else:
print("i is greater than 15")
print("i'm in else Block™")
print("i'm not in if and not in else Block™)
Output:
lisgreaterthan15
i'minelseBlock
I'm not in if and not in else Block
If Else in Python using List Comprehension

In this example, we are using an Python else if statement in a list
comprehension with the condition that if the element of the list is odd then its digit
sum will be stored else not.
Python
Explicit function
def digitSum(n):

dsum =0

for ele in str(n):

dsum += int(ele)
return dsum

Initializing list
List = [367, 111, 562, 945, 6726, 873]

Using the function on odd elements of the list
newL.ist = [digitSum(i) for i in Listif i & 1]

Displaying new list
print(newL.ist)

Output :

[16, 3, 18, 18]

Python Nested If Statement

A nested if is an if statement that is the target of another if statement. Nested if
statements mean an if statement inside another if statement.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-comprehension
https://www.geeksforgeeks.org/python-list-comprehension
https://www.geeksforgeeks.org/nested-if-statement-in-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Yes, Python allows us to nest if statements within if statements. i.e., we can place
an if statement inside another if statement.
Flowchart of Python Nested if Statement

: true @ Nested Test
Test Expression > Expression
true | false
Body of Body of
Body of else Nested if nested else

| J

»]
€

Y

Statement just
below if

Flowchart of Python Nested if statement

Syntax:

if(conditionl):
#Executeswhenconditionlistrue
if(condition2):
#Executeswhencondition2istrue
#ifBlockisendhere
if Block is end here

Example of Python Nested If Statement

In this example, we are showing nested if conditions in the code, All the If condition
in Python will be executed one by one.

Python

python program to illustrate nested If statement

i =10
if (i == 10):
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

First if statement
if (i < 15):
print("i is smaller than 15")

Nested - if statement
Will only be executed if statement above

#itis true
if (i <12):
print("i is smaller than 12 too™)
else:
print("i is greater than 15")
Output:
I IS smaller than 15
i is smaller than 12 too
Python Elif

Here, a user can decide among multiple options. The if statements are executed
from the top down.
As soon as one of the conditions controlling the if is true, the statement associated
with that if is executed, and the rest of the ladder is bypassed. If none of the
conditions is true, then the final “clse” statement will be executed.

Flowchart of Elif Statement in Python
Let’s look at the flow of control in if-elif-else ladder:

Test
expression
1

Yes

v

Statement 1

Test
expression
2

Yes

\4

Statement 2

Test Yes
expression

3

Statement 3

P Body of else >

v
Statement just
below
if-elseif

v

Flowchart of if-elif-else ladder

Syntax:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

if(condition):
statement

elif(condition):
statement

else:
statement
Example of Python if-elif-else ladder

In the example, we are showing single if in Python, multiple elif conditions, and
single else condition.

Python

Python program to illustrate if-elif-else ladder

#!/usr/bin/python

i=25
if (i == 10):
print("i is 10")
elif (i == 15):
print("i is 15")
elif (i == 20):
print("i is 20™)
else:
print("i is not present")
Output:

I is not present
Ternary Statement | Short Hand If Else Statement

Whenever there is only a single statement to be executed inside the if block then
shorthand if can be used. The statement can be put on the same line as the if
statement.

Example of Python If shorthand
In the given example, we have a condition that if the number is less than 15, then
further code will be executed.
if condition: statement

Python

Python program to illustrate short hand if
i=10

if i < 15: print("i is less than 15")

Output

I is less than 15

Example of Short Hand If Else Statements
This can be used to write the if-else statements in a single line where only one
statement is needed in both the if and else blocks.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Syntax: statement_when_True if condition else statement_when_False
In the given example, we are printing True if the number is 15, or else it will print
False.

Python

Python program to illustrate short hand if-else

i=10

print(True) if i < 15 else print(False)

Output:

True

Similar Reads:

. Python3 —if, if..else, Nested if, if-elif statements

. Using Else Conditional Statement With For loop in Python

. How to use if, else & elif in Python Lambda Functions

Python If Else Statements — Conditional Statements
What is the conditional statement of if-else?

The if-else statement in Python is used to control the flow of the program based on
a condition. It has the following syntax:

if..condition:
#Execute..this..block..if..conditions.. True
else:
Execute this block if condition is False
For example:
x=10
if. x>5:
print("x..is..greater..than..5")
else:

print("x is not greater than 5")
How many else statements can a single if condition have in Python?

A single if condition can have at most one else statement. However, you can have
multiple elif (else if) statements to check additional conditions if needed:
x=10
if.x>15:
print("x..is..greater..than..15")
elif..x>5:
print("x..is..greater..than..5..but..not..greater..than..15")
else:
print("x is 5 or less™)

What are the different types of control statements in Python?

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python3-if-if-else-nested-if-if-elif-statements
https://www.geeksforgeeks.org/using-else-conditional-statement-with-for-loop-in-python
https://www.geeksforgeeks.org/how-to-use-if-else-elif-in-python-lambda-functions

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In Python, control statements are used to alter the flow of execution based on
specific conditions or looping requirements. The main types of control statements
are:

. Conditional statements: if, else, elif

« Looping statements: for, while

. Control flow statements: break, continue, pass, return

What are the two types of control statements?

The two primary types of control statements in Python are:

. Conditional statements: Used to execute code based on certain conditions
(if, else, elif).

« Looping statements: Used to execute code repeatedly until a condition is met
(for, while).

Are control statements and conditional statements the same?

No, control statements and conditional statements are not exactly the same.

« Conditional statements (if, else, elif) specifically deal with checking
conditions and executing code based on whether those conditions
are True or False.

« Control statements encompass a broader category that includes both
conditional statements (if, else, elif) and looping statements (for, while), as
well as other statements (break, continue, pass, return) that control the flow of
execution in a program.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

Basic I/O operators

In Python programming, Operators in general are used to perform operations on
values and variables. These are standard symbols used for logical and arithmetic
operations. In this article, we will look into different types of Python operators.

« OPERATORS: These are the special symbols. Eg- +, *, /, etc.

« OPERAND: It is the value on which the operator is applied.

Types of Operators in Python

Arithmetic Operators

Comparison Operators

Logical Operators

Bitwise Operators

Assignment Operators

Identity Operators and Membership Operators

A

Arithmetic Operators in Python

Python Arithmetic operators are used to perform basic mathematical operations
like addition, subtraction, multiplication, and division.

In Python 3.x the result of division is a floating-point while in Python 2.x division
of 2 integers was an integer. To obtain an integer result in Python 3.x floored (//
integer) is used.

Operator Description Syntax

Addition: adds two
+ X+y
operands

Subtraction: subtracts two

- operands =y

N Multiplication: multiplies X%y
two operands

/ Division (float): divides X1y

the first operand by the

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-arithmetic-operators/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator Description Syntax

second

Division (floor): divides
/l the first operand by the x//y
second

Modulus: returns the
remainder when the first

0, 0,

% operand is divided by the X%y
second

o Power: Returns first raised X **y

to power second

Example of Arithmetic Operators in Python

Division Operators

In Python programming language Division Operators allow you to divide two
numbers and return a quotient, i.e., the first number or number at the left is divided
by the second number or number at the right and returns the quotient.
There are two types of division operators:

1. Float division

2. Floor division

Float division

The quotient returned by this operator is always a float number, no matter if two
numbers are integers. For example:

Example: The code performs division operations and prints the results. It
demonstrates that both integer and floating-point divisions return accurate results.
For example, *10/2' results in 5.0°, and ¢-10/2’ results in ¢-5.0°.

Python

print(5/5)

print(10/2)

print(-10/2)

print(20.0/2)

Output:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-programming-language/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

1.0
5.0
-5.0
10.0

Integer division(Floor division)

The quotient returned by this operator is dependent on the argument being passed.
If any of the numbers is float, it returns output in float. It is also known as Floor
division because, if any number is negative, then the output will be floored. For
example:

Example: The code demonstrates integer (floor) division operations using the // in
Python operators. It provides results as follows: *10//3" equals ¢3°, ¢-
5//2° equals ¢-3°, ‘5.0//2' equals €2.0°, and ¢-5.0//2° equals ¢-3.0°. Integer division
returns the largest integer less than or equal to the division result.

Pythons

print(10//3)

print (-5//2)

print (5.0//2)

print (-5.0//2)

Output:

3

-3

2.0

-3.0

Precedence of Arithmetic Operators in Python

P — Parentheses

E — Exponentiation

M — Multiplication (Multiplication and division have the same precedence)
D — Division

A — Addition (Addition and subtraction have the same precedence)

S — Subtraction

A e

X % 10 -> yields the last digit
« X% 100 -> yield last two digits
Arithmetic Operators With Addition, Subtraction, Multiplication, Modulo and
Power
Here is an example showing how different Arithmetic Operators in Python work:
Example: The code performs basic arithmetic operations with the values
of ‘a’ and “b’. It adds (‘+’), subtracts (‘-¢), multiplies (°*’), computes the
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

remainder (‘%”), and raises a to the power of ‘b (**)’. The results of these
operations are printed.

Python

a=9

b=4

add=a+b

sub=a-b
mul=a*b
mod=a% b

p=a ** |
print(add)
print(sub)
print(mul)
print(mod)
print(p)
Output:
13

5

36

1

6561

Comparison of Python Operators

In Python Comparison of Relational operators compares the values. It either
returns True or False according to the condition.

Operator Description Syntax

Greater than: True if the
> left operand is greater x>y
than the right

Less than: True if the left

< operand is less than the x<y
right

== Equal to: True if both x==y

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-object-comparison-is-vs/
https://www.geeksforgeeks.org/relational-operators-in-python/
https://www.geeksforgeeks.org/relational-operators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator

= is an assignment operator and == comparison operator.

Description

operands are equal

Not equal to — True if
operands are not equal

Greater than or equal to
True if the left operand is
greater than or equal to
the right

Less than or equal to True
if the left operand is less
than or equal to the right

Precedence of Comparison Operators in Python
In Python, the comparison operators have lower precedence than the arithmetic
operators. All the operators within comparison operators have the same precedence

order.

Example of Comparison Operators in Python
Let’s see an example of Comparison Operators in Python.
Example: The code compares the values of ¢a’ and ‘b’ using various comparison
Python operators and prints the results. It checks if ¢a’ is greater than, less than,
equal to, not equal to, greater than, or equal to, and less than or equal to ‘b’.

Python
a=13
b=233
print(a > b)
print(a < b)
print(a == b)
print(a != b)
print(a >= b)
print(a <= b)
Output
False

True

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Syntax

Xl=y

X>=y

X<=y

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

False
True
False

True

Logical Operators in Python

Python Logical operators perform Logical AND, Logical OR, and Logical
NOT operations. It is used to combine conditional statements.

Operator Description Syntax

Logical AND: True if

And both the operands are true xandy
Or Logical OR: True if either X or

of the operands is true y
Not Logical NOT: True if the not x

operand is false
Precedence of Logical Operators in Python

The precedence of Logical Operators in Python is as follows:
1. Logical not
2. logical and
3. logical or
Example of Logical Operators in Python
The following code shows how to implement Logical Operators in Python:
Example: The code performs logical operations with Boolean values. It checks if
both ¢a’ and ‘b’ are true (‘and’), if at least one of them is true (‘or’), and negates
the value of ‘a’ using ‘not’. The results are printed accordingly.
Python
a=True
b = False
print(a and b)
print(a or b)
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print(not a)

Output
False

True

False

Bitwise Operators in Python

Python Bitwise operators act on bits and perform bit-by-bit operations. These are
used to operate on binary numbers.

Operator Description Syntax
& Bitwise AND X&Y
| Bitwise OR X|y
~ Bitwise NOT ~X
A Bitwise XOR X"y
>> Bitwise right shift X>>
<< Bitwise left shift X<<

Precedence of Bitwise Operators in Python
The precedence of Bitwise Operators in Python is as follows:
1. Bitwise NOT
2. Bitwise Shift
3. Bitwise AND
4. Bitwise XOR
5. Bitwise OR
Bitwise Operators in Python
Here is an example showing how Bitwise Operators in Python work:

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-bitwise-operators/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example: The code demonstrates various bitwise operations with the values
of ¢a’ and ‘b’. It performs bitwise AND (&), OR (]), NOT (~), XOR (™), right
shift (>>), and left shift (<<) operations and prints the results. These operations
manipulate the binary representations of the numbers.

Python

a=10

b=4

print(a & b)

print(a | b)

print(~a)

print(a " b)

print(a >> 2)

print(a << 2)

Output
0

14
-11
14
2
40

Bitwise AND Operator

The Python Bitwise AND (&) operator takes two equal-length bit patterns as
parameters. The two-bit integers are compared. If the bits in the compared positions
of the bit patterns are 1, then the resulting bit is 1. If not, it is 0.

Example: Take two bit values X and Y, where X = 7=(111)2 and Y =4 = (100)2 .
Take Bitwise and of both X & y

Note: Here, (111)2 represent binary number.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

111
&100;

100 = 4

Python
a=10
b=4

Print bitwise AND operation
print("a & b =", a & b)
Output

a&b=0

Bitwise OR Operator

The Python Bitwise OR (|) Operator takes two equivalent length bit designs as
boundaries; if the two bits in the looked-at position are 0, the next bit is zero. If not,
itis 1.

Example: Take two bit values X and Y, where X =7=(111)2 and Y =4 = (100)2 .
Take Bitwise OR of both X, Y

111,
1 100,

111, =7

Python
a=10
b=4

Print bitwise OR operation
print("a| b =",a|b)

Output

alb=14

Bitwise XOR Operator

The Python Bitwise XOR (©) Operator also known as the exclusive OR operator,
Is used to perform the XOR operation on two operands. XOR stands for “exclusive
or”, and it returns true if and only if exactly one of the operands is true. In the

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

context of bitwise operations, it compares corresponding bits of two operands. If
the bits are different, it returns 1; otherwise, it returns 0.

Example: Take two bit values X and Y, where X = 7= (111)2 and Y = 4 = (100)2
. Take Bitwise and of both X & Y

111,
“100:;

011.

I
w

Python
a=10
b=4

print bitwise XOR operation
print("fa”b=",a”b)

Output

a’"b=14

Bitwise NOT Operator

The preceding three bitwise operators are binary operators, necessitating two
operands to function. However, unlike the others, this operator operates with only
one operand.

The Python Bitwise Not (~) Operator works with a single value and returns its
one’s complement. This means it toggles all bits in the value, transforming 0 bits
to 1 and 1 bits to 0, resulting in the one’s complement of the binary number.
Example: Take two bit values X and Y, where X = 5= (101)2 . Take Bitwise NOT
of X.

~1001:
01102 =6

Python
a=10
b=4

Print bitwise NOT operation
print("~a =", ~a)
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Output

~a=-11

Bitwise Shift

These operators are used to shift the bits of a number left or right thereby
multiplying or dividing the number by two respectively. They can be used when
we have to multiply or divide a number by two.

Python Bitwise Right Shift
Shifts the bits of the number to the right and fills 0 on voids left(fills 1 in the case
of a negative number) as a result. Similar effect as of dividing the number with
some power of two.
Example 1:

a =10 = 0000 1010 (Binary)
a>>1=00000101=5 tricks a/2

Example 2:

a=-10=1111 0110 (Binary)
a>>1=11111011=-5
Python

a=10

b=-10

print bitwise right shift operator
print(fa>>1=",a>>1)
print("b>>1=",b>>1)

Output
a>>1=5
b>>1=-5

Python Bitwise Left Shift
Shifts the bits of the number to the left and fills 0 on voids right as a result. Similar
effect as of multiplying the number with some power of two.

Example 1:

a=5=0000 0101 (Binary)
a<<1=00001010=10 tricks a*2
a<<2=00010100 =20

Example 2:

b =-10=1111 0110 (Binary)
b<<1=11101100=-20

b <<2=1101 1000 = -40
Python

a=>5

b=-10

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print bitwise left shift operator

print("fa<<1=",a<<1)
print("b<<1=",b<<1)

Output:
a<<1=10
b<<1=-20

Assignment Operators in Python

Python Assignment operators are used to assign values to the variables.

Operator

0=

Description

Assign the value of the
right side of the
expression to the left
side operand

Add AND: Add right-
side operand with left-
side operand and then
assign to left operand

Subtract AND: Subtract
right operand from left
operand and then assign
to left operand

Multiply AND: Multiply
right operand with left
operand and then assign
to left operand

Divide AND: Divide left
operand with right
operand and then assign
to left operand

Modulus AND: Takes
modulus using left and

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Syntax

X=y+z

a+t=b a=a+b

a-=b a=a-b

a*=b a=a*b

al=b a=alb

a%=b a=a%b

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/assignment-operators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator

/=

*k—

>>=

<<=

Description

right operands and
assign the result to left
operand

Divide(floor) AND:
Divide left operand with
right operand and then
assign the value(floor) to
left operand

Exponent AND:
Calculate exponent(raise
power) value using
operands and assign
value to left operand

Performs Bitwise AND
on operands and assign
value to left operand

Performs Bitwise OR on
operands and assign
value to left operand

Performs Bitwise XOR
on operands and assign
value to left operand

Performs Bitwise right
shift on operands and
assign value to left
operand

Performs Bitwise left
shift on operands and

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Syntax
all=b a=allb
a**=p a=a**b
a&=b a=a&b
al=b a=alb
ar=b a=a™b
a>>=h a=a>>b
a<<=h a=a<<b

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator Description Syntax

assign value to left
operand

Assignment Operators in Python

a=10
b=a
print(b)
b+=a
print(b)
b-=a
print(b)
b*=a
print(b)
b<<=a
print(b)

Output
10

20

10

100
102400

Identity Operators in Python

In Python, is and is not are the identity operators both are used to check if two
values are located on the same part of the memory. Two variables that are equal do
not imply that they are identical.

is..True..if..the..operands..are..identical
is..not..True..if..the..operands..are..not..identical

Example Identity Operators in Python

Let’s see an example of Identity Operators in Python.
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-membership-identity-operators-not-not/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example: The code uses identity operators to compare variables in Python. It
checks if ¢a’ is not the same object as ‘b’ (which is true because they have different
values) and if a’ is the same object as ‘¢’ (which is true because ‘¢’ was assigned
the value of ¢a’).

Python

a=10

b =20

c=a

print(a is not b)
print(a is c)

Output
True

True

Membership Operators in Python

In Python, in and not in are the_.membership operators that are used to test whether
a value or variable is in a sequence.

in True if wvalue is found in the sequence
not in True if value is not found in the sequence

Examples of Membership Operators in Python
The following code shows how to implement Membership Operators in Python:
Example: The code checks for the presence of values ‘x’ and ‘y’ in the list. It
prints whether or not each value is present in the list. “x” is not in the list, and ‘y’ is
present, as indicated by the printed messages. The code uses the ‘in’ and ‘not
in’ Python operators to perform these checks.

Python
X=24
y=20

list = [10, 20, 30, 40, 50]

if (x not in list):

print("x is NOT present in given list")
else:

print("X is present in given list™)

if (y in list):

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-membership-identity-operators-not-not/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print("y is present in given list")
else:
print("y is NOT present in given list")

Output
x is NOT present in given list

y is present in given list

Ternary Operator in Python

in Python, Ternary operators also known as conditional expressions are operators
that evaluate something based on a condition being true or false. It was added to
Python in version 2.5.
It simply allows testing a condition in a single line replacing the multiline if-else
making the code compact.
Syntax : [on_true] if [expression] else [on_false]

Examples of Ternary Operator in Python
The code assigns values to variables ¢a’ and ‘b’ (10 and 20, respectively). It then
uses a conditional assignment to determine the smaller of the two values and
assigns it to the variable ‘min’. Finally, it prints the value of ‘min’, which is 10 in
this case.
Python
a, b=10, 20
min=aifa<belseb

print(min)
Output:
10

Precedence and Associativity of Operators in Python
In Python, Operator precedence and associativity determine the priorities of the
operator.

Operator Precedence in Python
This is used in an expression with more than one operator with different precedence
to determine which operation to perform first.
Let’s see an example of how Operator Precedence in Python works:
Example: The code first calculates and prints the value of the expression 10 + 20
* 30, which is 610. Then, it checks a condition based on the values of
the ‘name’ and ‘age’ variables. Since the name is “Alex” and the condition is
satisfied using the or operator, it prints “Hello! Welcome.”

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/ternary-operator-in-python/
https://www.geeksforgeeks.org/precedence-and-associativity-of-operators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

expr =10 + 20 * 30
print(expr)

name = "Alex"
age=20

iIf name == "Alex" or name == "John" and age >= 2:
print("Hello! Welcome.")

else:
print("Good Bye!!")

Output
610

Hello! Welcome.

Operator Associativity in Python
If an expression contains two or more operators with the same precedence then
Operator Associativity is used to determine. It can either be Left to Right or from
Right to Left.
The following code shows how Operator Associativity in Python works:
Example: The code showcases various mathematical operations. It calculates and
prints the results of division and multiplication, addition and subtraction,
subtraction within parentheses, and exponentiation. The code illustrates different
mathematical calculations and their outcomes.
Python
print(100 / 10 * 10)
print(5 - 2 + 3)
print(5 - (2 + 3))
print(2 ** 3 ** 2)

Output
100.0

6
0
512

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Click to go in front page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

Fundamental Concepts

What is Python

Python’s simplicity, readability, and versatility make it an excellent choice for
beginners and experienced programmers alike. In this article, we’ve covered the
basics of Python, from setting up your environment to writing your first program
and understanding syntax, control flow, and functions. As you continue your
journey with Python Basics, don’t hesitate to explore its vast ecosystem of libraries,
frameworks, and tools to unleash its full potential in various domains of
programming.

Writing your first Python Program

Here we provided the latest Python 3 version compiler where you can edit and
compile your written code directly with just one click of the RUN Button. So test
yourself with Python’s first exercises.

Python

print(*Hello World! I Don't Give a Bug™)

Output
Hello World! I Don't Give a Bug

Comments in Python

Comments in Python are the lines in the code that are ignored by the interpreter
during the execution of the program. Also, Comments enhance the readability of the
code and help the programmers to understand the code very carefully.

Python

sample comment

This is Python Comment

name = "geeksforgeeks"

print(name)

Output
geeksforgeeks
Keywords in Python

Keywords in Python are reserved words that can not be used as a variable name,
function name, or any other identifier.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/how-to-install-python-tensorflow-in-windows/
https://www.geeksforgeeks.org/python-comments/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Keywords

and False nonlocal
as finally not
assert for Or
break from pass
class global raise
continue if return
def import True
del is try
elif in while
else lambda with
except None yield

Python Variable

Python Variable is containers that store values. Python is not “statically typed”. An
Example of a Variable in Python is a representational name that serves as a pointer
to an object. Once an object is assigned to a variable, it can be referred to by that
name.

Rules for Python variables

« A Python variable name must start with a letter or the underscore character.

« A Python variable name cannot start with a number.

« A Python variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and _).

« Variable in Python names are case-sensitive (name, Name, and NAME are
three different variables).

« The reserved words(keywords) in Python cannot be used to name the variable
in Python.

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-nonlocal-keyword/
https://www.geeksforgeeks.org/python-as-keyword/
https://www.geeksforgeeks.org/finally-keyword-in-python/
https://www.geeksforgeeks.org/python-not-keyword/
https://www.geeksforgeeks.org/python-assert-keyword/
https://www.geeksforgeeks.org/python-for-loops/
https://www.geeksforgeeks.org/python-break-statement/
https://www.geeksforgeeks.org/python-pass-statement/
https://www.geeksforgeeks.org/python-classes-and-objects/
https://www.geeksforgeeks.org/global-keyword-in-python/
https://www.geeksforgeeks.org/python-raise-keyword/
https://www.geeksforgeeks.org/python-continue-statement/
https://www.geeksforgeeks.org/python-return-statement/
https://www.geeksforgeeks.org/python-def-keyword/
https://www.geeksforgeeks.org/import-module-python/
https://www.geeksforgeeks.org/python-del-to-delete-objects/
https://www.geeksforgeeks.org/is-keyword-in-python/
https://www.geeksforgeeks.org/python-try-except/
https://www.geeksforgeeks.org/python-in-keyword/
https://www.geeksforgeeks.org/python-while-loop/
https://www.geeksforgeeks.org/python-lambda/
https://www.geeksforgeeks.org/with-statement-in-python/
https://www.geeksforgeeks.org/python-try-except/
https://www.geeksforgeeks.org/python-none-keyword/
https://www.geeksforgeeks.org/python-yield-keyword/
https://www.geeksforgeeks.org/python-variables/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example

Python

An integer assignment
age = 45

A floating point
salary = 1456.8

A string
name = "John"

print(age)
print(salary)
print(name)

Output
45
1456.8

John

Python Data Types

Data types are the classification or categorization of data items. It represents the
kind of value that tells what operations can be performed on a particular data. Since
everything is an object in Python programming, data types are classes and variables

are instances (objects) of these classes.

/

~ Python - Data Types

)

| |

Numeric }Dictionary'; \ Boolean‘ | Set ‘ | Type

Sequence

|

|

mkrgﬁ [Flcl)at] [Strir!gs] JTupﬁ

(" Complex |
Number

Y

(—List

Gautam
S

Example: This code assigns variable ‘x’ different values of various data types in

Python.
CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

x = "Hello World" # string

X =50 # integer

X =60.5 # float

X = 3] # complex

X = ["geeks", "for", "geeks"] # list
x = ("geeks", "for", "geeks") # tuple
X

x = {"geeks", "for", "geeks"} # set

X = True # bool

TR

~
i
QD
=
(D-
)
QD
(e
~—+
QD
3
of

«
(D-
i—'\
o

-
++
=3
(]
—+

Click to go in front page

CLICK HERE TO JOIN OUR WHATSAPP GROUP

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

	permanently store data in a non-volatile memory (e.g. hard disk).
	computer is turned off, we use files for future use of the data.

	File Handling
	Syntax
	Open a File on the Server
	Example

	Read Only Parts of the File
	Read Lines
	print(f.readline())
	print(f.readline()) print(f.readline())
	line:

	Close Files
	print(f.readline())

	Write to an Existing File
	Example

	Create a New File
	following parameters:

	Delete a File
	Check if File exist:
	you try to delete it:
	else:

	Delete Folder
	not specified, it reads and returns up to the end of the file.
	Exception: matlab ek error jo program chalate waqt hoti hai. Python mein, jab error aati hai to program crash nahi hota balki aap use handle kar sakte ho try aur except blocks ka use karke, taaki aap decide kar sako ki error hone par kya karna hai.
	Syntax Errors in Python
	Python Logical Errors (Exception)
	Characteristics of Logical Errors
	Example of a Logical Error
	Analysis
	Cause of Logical Error

	Common Builtin Exceptions
	Error Handling
	Handling Exceptions with Try/Except/Finally
	Raising exceptions for a predefined condition

	What is Module in Python?
	Examples of modules

	What is Package in Python?
	Examples of Packages:

	What is Library in Python
	Examples of Libraries:

	What is NumPy?
	Features of NumPy
	Install Python NumPy
	Arrays in NumPy
	NumPy Array Creation
	1. Create NumPy Array with List and Tuple
	2. Create Array of Fixed Size
	3. Create Using arange() Function
	5. Create Using linspace() Function
	6. Reshaping Array using Reshape Method
	7. Flatten Array

	NumPy Array Indexing
	NumPy Basic Operations
	1. Operations on a single NumPy array

	NumPy – Unary Operators
	NumPy – Binary Operators
	NymPy’s ufuncs
	Python Function Declaration
	Types of Functions in Python

	Creating a Function in Python
	Calling a Function in Python
	Python Function with Parameters

	Python Function Arguments
	Types of Python Function Arguments
	Default Arguments
	Keyword Arguments
	Positional Arguments
	Arbitrary Keyword Arguments
	Docstring

	Python Function within Functions
	Anonymous Functions in Python
	Recursive Functions in Python
	Return Statement in Python Function
	Pass by Reference and Pass by Value
	Quick Links

	FAQs- Python Functions
	What is function in Python?
	What are the 4 types of Functions in Python?
	How to Write a Function in Python?
	What are the parameters of a function in Python?
	What is Python main function?

	What is an Array in Python?
	Create an Array in Python
	Complexities for Creation of Arrays:

	Adding Elements to a Array
	Complexities for Adding elements to the Arrays

	Accessing Elements from the Array
	Complexities for accessing elements in the Arrays

	Removing Elements from the Array
	Complexities for Removing elements in the Arrays

	Slicing of an Array
	Searching Element in an Array
	Complexities for searching elements in the Arrays

	Updating Elements in a Array
	Complexities for updating elements in the Arrays
	Reversing Elements in a Array
	Complexities for reversing elements in the Arrays:
	Extend Element from Array
	What is extend element from array?

	Syntax of list extend()

	Python Dictionary Syntax
	What is a Dictionary in Python?
	How to Create a Dictionary

	Dictionary Example
	Different Ways to Create a Python Dictionary
	Complexities for Creating a Dictionary:

	Adding Elements to a Dictionary
	Complexities for Adding Elements in a Dictionary:

	Accessing Elements of a Dictionary
	Access a Value in Python Dictionary
	Complexities for Accessing elements in a Dictionary:

	Accessing an Element of a Nested Dictionary
	Deleting Elements using ‘del’ Keyword
	Dictionary Methods
	Creating a List
	Accessing Elements
	Slicing a List
	Modifying Elements
	Adding Elements
	Removing Elements
	List Comprehensions
	Common List Methods

	Difference Between List and Array in Python
	Python While Loop
	Python for Loop
	Syntax of Python for Loop

	Python Nested Loops
	Syntax of Python Nested for Loop
	Syntax of Python Nested while Loop

	Python Loop Control Statements
	Python Continue
	Python Break
	Python Pass

	Python If Statement
	Flowchart of If Statement
	Syntax of If Statement in Python
	Example of Python if Statement

	Python If Else Statement
	Flowchart of If Else Statement
	Syntax of If Else in Python
	Example of Python If Else Statement
	If Else in Python using List Comprehension

	Python Nested If Statement
	Flowchart of Python Nested if Statement
	Example of Python Nested If Statement

	Python Elif
	Flowchart of Elif Statement in Python
	Example of Python if-elif-else ladder

	Ternary Statement | Short Hand If Else Statement
	Example of Python If shorthand
	Example of Short Hand If Else Statements

	Python If Else Statements – Conditional Statements
	What is the conditional statement of if-else?
	How many else statements can a single if condition have in Python?
	What are the different types of control statements in Python?
	What are the two types of control statements?
	Are control statements and conditional statements the same?

	Types of Operators in Python
	Arithmetic Operators in Python
	Example of Arithmetic Operators in Python
	Division Operators
	Float division
	Integer division(Floor division)

	Precedence of Arithmetic Operators in Python
	Arithmetic Operators With Addition, Subtraction, Multiplication, Modulo and Power

	Comparison of Python Operators
	Precedence of Comparison Operators in Python
	Example of Comparison Operators in Python

	Logical Operators in Python
	Precedence of Logical Operators in Python
	Example of Logical Operators in Python

	Bitwise Operators in Python
	Precedence of Bitwise Operators in Python
	Bitwise Operators in Python

	Bitwise AND Operator
	Bitwise OR Operator
	Bitwise XOR Operator
	Bitwise NOT Operator
	Bitwise Shift
	Python Bitwise Right Shift
	Python Bitwise Left Shift
	Assignment Operators in Python
	Assignment Operators in Python

	Identity Operators in Python
	Example Identity Operators in Python

	Membership Operators in Python
	Examples of Membership Operators in Python

	Ternary Operator in Python
	Examples of Ternary Operator in Python

	Precedence and Associativity of Operators in Python
	Operator Precedence in Python
	Operator Associativity in Python

	What is Python
	Writing your first Python Program
	Comments in Python
	Keywords in Python
	Python Variable
	Rules for Python variables

	Python Data Types

