
Team Adityapur Hosteller

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Fantastic notes

24

Python Notes
Created by GPA HOSTELER
BINODPC

Content (click link)

Fundamental concept
Bisic I/O operation
Control flow :conditional Blocks

Control flow :Loop

List
Dictionary

Array
Function
Numpy

Panda
module and package
File

Error and Exception Handling

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Files

What is a file?

File is a named location on disk to store related information. It is used to

permanently store data in a non-volatile memory (e.g. hard disk).

Since, random access memory (RAM) is volatile which loses its data when

computer is turned off, we use files for future use of the data.

When we want to read from or write to a file we need to open it first. When we are done, it

needs to be closed, so that resources that are tied with the file are freed.

Hence, in Python, a file operation takes place in the following order.

1. Open a file

2. Read or write (perform operation)

3. Close the file

How to open a file?

Python has a built-in function open() to open a file. This function returns a file object, also called

a handle, as it is used to read or modify the file accordingly.

File handling is an important part of any web application.

Python has several functions for creating, reading, updating, and deleting

files.

File Handling

The key function for working with files in Python is the open() function.

The open() function takes two parameters; filename, and mode.

There are four different methods (modes) for opening a file:

exist

Files

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In addition you can specify if the file should be handled as binary or text

mode

'+' Open a file for updating (reading and writing)

Syntax

To open a file for reading it is enough to specify the name of the file:

f = open("demofile.txt","r")

The code above is the same as:

f = open(" demofile.txt","t"))

Because "r" for read, and "t" for text are the default values, you do not

need to specify them.

Open a File on the Server

Assume we have the following file, located in the same folder as Python:

Hello! Welcome to demofile.txt

This file is for testing purposes.

Good Luck!

To open the file, use the built-in open() function.

The open() function returns a file object, which has a read() method for

reading the content of the file:

"a" - Append - Opens a file for appending, creates the file if it does not exis

"w" - Write - Opens a file for writing, truncating (remove) the file first.

"x" - Create - Creates the specified file, returns an error if the file exists

Note: Make sure the file exists, or else you will get an error.

demofile.txt

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example
Read two lines of the file:

Example
Read one line of the file:

Example

Return the 5 first characters of the file:

Example

f = open("demofile.txt", "r")

print(f..read())

Read Only Parts of the File

By default the read() method returns the whole text, but you can also

specify how many characters you want to return:

f = open("demofile.txt", "r")

print(f.read(5))

Read Lines

You can return one line by using the readline() method:

f = open("demofile.txt", "r")

print(f.readline())

By calling readline() two times, you can read the two first lines:

f = open("demofile.txt", "r")

print(f.readline())

print(f.readline())

Run example »

By looping through the lines of the file, you can read the whole file, line by

line:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2
https://www.w3schools.com/python/showpython.asp?filename=demo_file_readline2

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example

Close the file when you are finish with it:

Example

Loop through the file line by line:

f = open("demofile.txt", "r")

for x in f:

print(x)

Close Files

It is a good practice to always close the file when you are done with it.

f = open("demofile.txt", "r")

print(f.readline())

f.close()

Note: You should always close your files, in some cases, due to buffering,

changes made to a file may not show until you close the file.

Write to an Existing File

To write to an existing file, you must add a parameter to

the open() function:

"a" - Append - will append to the end of the file

"w" - Write - will overwrite any existing content

Example

Open the file "demofile2.txt" and append content to the file:

f = open("demofile2.txt", "a")

f.write("Now the file has more content!")

f.cose()

#open and read the file after the appending:f = open(

"demofile2.txt", "r") print(f.read())

Run example »

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close
https://www.w3schools.com/python/showpython.asp?filename=demo_file_close

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example

Create a file called "myfile.txt":

Open the file "demofile3.txt" and overwrite the content:

f = open("demofile3.txt", "w")

f.write("Woops! I have deleted the content!")

f.cose()

#open and read the file after the appending:

f = open("demofile3.txt", "r")

 print(f.read())

Note: the "w" method will overwrite the entire file.

Create a New File

To create a new file in Python, use the open() method, with one of the

following parameters:

"x" - Create - will create a file, returns an error if the file exist "a" - Append

- will create a file if the specified file does not exist "w" - Write - will create a

file if the specified file does not exist

f = open("myfile.txt", "x")

Result: a new empty file is created!

Example

Create a new file if it does not exist:

f = open("myfile.txt", "w")

Delete a File

To delete a file, you must import the OS module, and run

its os.remove() function:

Example

Remove the file "demofile.txt":

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

import os

os.remove("demofile.txt")

Check if File exist:

To avoid getting an error, you might want to check if the file exists before

you try to delete it:

import os

if os.path.exists("demofile.txt"):

os.remove("demofile.txt")

else:

print("The file does not exist")

Delete Folder

To delete an entire folder, use the os.rmdir() method:

import os

os.rmdir("myfolder")

How to read files in Python?

To read a file in Python, we must open the file in reading mode.

There are various methods available for this purpose. We can use

the read(size) method to read in size number of data. If size parameter is

not specified, it reads and returns up to the end of the file.

Example

Check if file exists, then delete it:

Example

Remove the folder "myfolder":

Note: You can only remove empty folders.

>>> f = open("test.txt", 'r' ,encoding = 'utf-8')

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

>>> f.readlines()

['This is my first file\n', 'This file\n', 'contains three lines\n']

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Errors and Exceptions in Python

Errors are problems in a program that causes the program to stop its execution. On

the other hand, exceptions are raised when some internal events change the program’s

normal flow.

Table of Content

• Syntax Errors in Python

• Python Logical Errors (Exception)

• Common Builtin Exceptions

• Error Handling

Exception: matlab ek error jo program chalate waqt hoti hai. Python mein, jab error

aati hai to program crash nahi hota balki aap use handle kar sakte ho try aur except

blocks ka use karke, taaki aap decide kar sako ki error hone par kya karna hai.

Syntax Errors in Python

When the proper syntax of the language is not followed then a syntax error is thrown.

Example: It returns a syntax error message because after the if statement a colon: is

missing. We can fix this by writing the correct syntax.

Python3

initialize the amount variable

amount = 10000

check that You are eligible to

purchase Dsa Self Paced or not

if(amount>2999)

 print("You are eligible to purchase Dsa Self Paced")

Output:

Example 2: When indentation is not correct.

Python

if(a<3):

print("gfg")

Output

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python Logical Errors (Exception)

A logical error in Python, or in any programming language, is a type of bug that

occurs when a program runs without crashing (achanak se band hona) but produces

incorrect or unintended (unexpected) results. Logical errors are mistakes in the

program’s logic that lead to incorrect behavior or output, despite the syntax being

correct.

Characteristics of Logical Errors

1. No Syntax Error: The code runs successfully without any syntax errors.

2. Unexpected Output: The program produces output that is different from

what is expected.

3. Difficult to Detect: Logical errors can be subtle and are often harder to

identify and fix compared to syntax errors because the program appears to

run correctly.

4. Varied Causes: They can arise from incorrect assumptions, faulty logic,

improper use of operators, or incorrect sequence of instructions.

Example of a Logical Error

Consider a simple example where we want to compute the average of a list of

numbers:

Python

numbers = [10, 20, 30, 40, 50]

total = 0

Calculate the sum of the numbers

for number in numbers:

 total += number

Calculate the average (this has a logical error)

average = total / len(numbers) - 1

print("The average is:", average)

Analysis

• Expected Output: The average of the numbers [10, 20, 30, 40, 50] should

be 30.

• Actual Output: The program will output The average is: 29.0.

Cause of Logical Error

The logical error is in the calculation of the average:

average = total / len(numbers) - 1

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Instead, it should be:

average = total / len(numbers)

The incorrect logic here is the subtraction of 1, which results in a wrong average

calculation.

Common Builtin Exceptions

Some of the common built-in exceptions are other than above mention exceptions

are:

Exception Description

IndexError When the wrong index of a list is retrieved.

AssertionError It occurs when the assert statement fails

AttributeError It occurs when an attribute assignment is failed.

ImportError It occurs when an imported module is not found.

KeyError It occurs when the key of the dictionary is not found.

NameError It occurs when the variable is not defined.

MemoryError It occurs when a program runs out of memory.

TypeError
It occurs when a function and operation are applied in

an incorrect type.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Note: For more information, refer to Built-in Exceptions in Python

Error Handling

When an error and an exception are raised then we handle that with the help of the

Handling method.

Handling Exceptions with Try/Except/Finally

We can handle errors by the Try/Except/Finally method. we write unsafe code in the

try, fall back code in except and final code in finally block.

Python

put unsafe operation in try block

try:

 print("code start")

 # unsafe operation perform

 print(1 / 0)

if error occur the it goes in except block

except:

 print("an error occurs")

final code in finally block

finally:

 print("gautam_kumar_mahto")

Output:

code start

an error occurs

Gautam_kumar_mhato

Raising exceptions for a predefined condition

When we want to code for the limitation of certain conditions then we can raise an

exception.

Python3

try for unsafe code

try:

 amount = 1999

 if amount < 2999:

 # raise the ValueError

 raise ValueError("please add money in your account")

 else:

 print("You are eligible to purchase DSA Self Paced course")

if false then raise the value error

except ValueError as e:

 print(e)

Output:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/built-exceptions-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

please add money in your account

Click & go th first page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

we will see the difference between Python’s Module, Package, and Library. We

will also see some examples of each to things more clear.

What is Module in Python?

The module is a simple Python file that contains collections of functions and

global variables and with having a .py extension file. It is an executable file and

to organize all the modules we have the concept called Package in Python.

Examples of modules

1. Datetime

2. Regex

3. Random etc.

Example: Save the code in a file called demo_module.py

• Python3

def myModule(name):

 print("This is My Module : "+ name)

Import module named demo_module and call the myModule function inside it.

• Python3

import demo_module

Modules and packages

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-datetime-module/
https://www.geeksforgeeks.org/regular-expression-python-examples-set-1/
https://www.geeksforgeeks.org/python-random-function/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

demo_module.myModule("Math")

Output:

This is My Module : Math

What is Package in Python?

The package is a simple directory having collections of modules. This directory

contains Python modules and also having __init__.py file by which the interpreter

interprets it as a Package. The package is simply a namespace. The package also

contains sub-packages inside it.

Examples of Packages:

1. Numpy

2. Pandas

Example:

Student(Package)

| __init__.py (Constructor)

| details.py (Module)

| marks.py (Module)

| collegeDetails.py (Module)

What is Library in Python

The library is having a collection of related functionality of codes that allows you

to perform many tasks without writing your code. It is a reusable chunk of code

that we can use by importing it into our program, we can just use it by

importing that library and calling the method of that library with a period(.).

However, it is often assumed that while a package is a collection of modules, a

library is a collection of packages.

Examples of Libraries:

1. Matplotlib

2. Pytorch

3. Pygame

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/__init__-in-python/
https://www.geeksforgeeks.org/numpy-in-python-set-1-introduction/
https://www.geeksforgeeks.org/creating-a-pandas-series/
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/understanding-pytorch-lightning-datamodules/
https://www.geeksforgeeks.org/pygame-import-and-initialize/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

4. Seaborn etc.

Example:

Importing pandas library and call read_csv method using an alias of pandas i.e.

pd.

• Python3

import pandas as pd

df = pd.read_csv("file_name.csv")

Click & go th first page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/introduction-to-seaborn-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

NumPy stands for Numerical Python, is an open-source Python library that

provides support for large, multi-dimensional arrays and matrices.

It also have a collection of high-level mathematical functions to operate on arrays.

It was created by Travis Oliphant in 2005.

Table of Content

• What is NumPy?

• Features of NumPy

• Install Python NumPy

• Arrays in NumPy

• NumPy Array Creation

• NumPy Array Indexing

• NumPy Basic Operations

• NumPy – Unary Operators

• NumPy – Binary Operators

• NymPy’s ufuncs

• NumPy Sorting Arrays

What is NumPy?

NumPy is a general-purpose array-processing package.

It provides a high-performance multidimensional array object and tools for working

with these arrays.

It is the fundamental package for scientific computing with Python. It is open-

source software.

Features of NumPy

NumPy has various features which make them popular over lists.

Some of these important features include:

• A powerful N-dimensional array object

• Sophisticated (broadcasting) functions

• Tools for integrating C/C++ and Fortran code

• Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy in Python can also be used as an

efficient multi-dimensional container of generic data.

Arbitrary data types can be defined using Numpy which allows NumPy to

seamlessly and speedily integrate with a wide variety of databases.

Install Python NumPy

Numpy can be installed for Mac and Linux users via the following pip command:

Numpy

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-programming-language/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

pip install numpy

Windows does not have any package manager analogous to that in Linux or

Mac. Please download the pre-built Windows installer for NumPy

from here (according to your system configuration and Python version). And then

install the packages manually.

Note: All the examples discussed below will not run on an online IDE.

Arrays in NumPy

NumPy’s main object is the homogeneous multidimensional array.

• It is a table of elements (usually numbers), all of the same type, indexed by a

tuple of positive integers.

• In NumPy, dimensions are called axes. The number of axes is rank.

• NumPy’s array class is called ndarray. It is also known by the alias array.

Example:

In this example, we are creating a two-dimensional array that has the rank of 2 as

it has 2 axes.

The first axis(dimension) is of length 2, i.e., the number of rows, and the second

axis(dimension) is of length 3, i.e., the number of columns. The overall shape of

the array can be represented as (2, 3)

Python

import numpy as np

Creating array object

arr = np.array([[1, 2, 3],

 [4, 2, 5]])

Printing type of arr object

print("Array is of type: ", type(arr))

Printing array dimensions (axes)

print("No. of dimensions: ", arr.ndim)

Printing shape of array

print("Shape of array: ", arr.shape)

Printing size (total number of elements) of array

print("Size of array: ", arr.size)

Printing type of elements in array

print("Array stores elements of type: ", arr.dtype)

Output:

Array is of type: <class 'numpy.ndarray'>

No. of dimensions: 2

Shape of array: (2, 3)

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
https://www.geeksforgeeks.org/numpy-ndarray/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Size of array: 6

Array stores elements of type: int64

NumPy Array Creation

There are various ways of Numpy array creation in Python. They are as follows:
1. Create NumPy Array with List and Tuple

You can create an array from a regular Python list or tuple using the array()

function. The type of the resulting array is deduced from the type of the elements

in the sequences. Let’s see this implementation:

Python

import numpy as np

Creating array from list with type float

a = np.array([[1, 2, 4], [5, 8, 7]], dtype = 'float')

print ("Array created using passed list:\n", a)

Creating array from tuple

b = np.array((1 , 3, 2))

print ("\nArray created using passed tuple:\n", b)

Output:

Array created using passed list:

 [[1. 2. 4.]

 [5. 8. 7.]]

Array created using passed tuple:

 [1 3 2]
2. Create Array of Fixed Size

Often, the element is of an array is originally unknown, but its size is known.

Hence, NumPy offers several functions to create arrays with initial placeholder

content.

This minimize the necessity of growing arrays, an expensive operation. For

example: np.zeros, np.ones, np.full, np.empty, etc.

To create sequences of numbers, NumPy provides a function analogous to the range

that returns arrays instead of lists.

Python

Creating a 3X4 array with all zeros

c = np.zeros((3, 4))

print ("An array initialized with all zeros:\n", c)

Create a constant value array of complex type

d = np.full((3, 3), 6, dtype = 'complex')

print ("An array initialized with all 6s."

 "Array type is complex:\n", d)

Create an array with random values

e = np.random.random((2, 2))

print ("A random array:\n", e)

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-array-creation/
https://www.geeksforgeeks.org/python-set-3-strings-lists-tuples-iterations/
https://www.geeksforgeeks.org/python-tuples/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Output:

An array initialized with all zeros:

 [[0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]]

An array initialized with all 6s.Array type is complex:

 [[6.+0.j 6.+0.j 6.+0.j]

 [6.+0.j 6.+0.j 6.+0.j]

 [6.+0.j 6.+0.j 6.+0.j]]

A random array:

 [[0.15471821 0.47506745]

 [0.03637972 0.15772238]]
3. Create Using arange() Function

arange(): This function returns evenly spaced values within a given

interval. Step size is specified.

Python

Create a sequence of integers

from 0 to 30 with steps of 5

f = np.arange(0, 30, 5)

print ("A sequential array with steps of 5:\n", f)

Output:

A sequential array with steps of 5:

[0 5 10 15 20 25]

5. Create Using linspace() Function

linspace(): It returns evenly spaced values within a given interval.

Python

Create a sequence of 10 values in range 0 to 5

g = np.linspace(0, 5, 10)

print ("A sequential array with 10 values between"

 "0 and 5:\n", g)

Output:

A sequential array with 10 values between0 and 5:

[0. 0.55555556 1.11111111 1.66666667 2.22222222 2.77777778

 3.33333333 3.88888889 4.44444444 5.]
6. Reshaping Array using Reshape Method

Reshaping array: We can use reshape method to reshape an array.

Consider an array with shape (a1, a2, a3, …, aN). We can reshape and convert it

into another array with shape (b1, b2, b3, …, bM). The only required condition is

a1 x a2 x a3 … x aN = b1 x b2 x b3 … x bM. (i.e. the original size of the array

remains unchanged.)

Python

Reshaping 3X4 array to 2X2X3 array

arr = np.array([[1, 2, 3, 4],

 [5, 2, 4, 2],

 [1, 2, 0, 1]])

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-arrange-in-python/
https://www.geeksforgeeks.org/numpy-linspace-python/
https://www.geeksforgeeks.org/reshape-numpy-array/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

newarr = arr.reshape(2, 2, 3)

print ("Original array:\n", arr)

print("---------------")

print ("Reshaped array:\n", newarr)

Output:

Original array:

 [[1 2 3 4]

 [5 2 4 2]

 [1 2 0 1]]

Reshaped array:

 [[[1 2 3]

 [4 5 2]]

 [[4 2 1]

 [2 0 1]]]
7. Flatten Array

Flatten array: We can use flatten method to get a copy of the array collapsed

into one dimension.

It accepts order argument. The default value is ????’ (for row-major order). Use

????’ for column-major order.

Python

Flatten array

arr = np.array([[1, 2, 3], [4, 5, 6]])

flat_arr = arr.flatten()

print ("Original array:\n", arr)

print ("Fattened array:\n", flat_arr)

Output:

Original array:

 [[1 2 3]

 [4 5 6]]

Fattened array:

 [1 2 3 4 5 6]

Note: The type of array can be explicitly defined while creating the array.

NumPy Array Indexing

Knowing the basics of NumPy array indexing is important for analyzing and

manipulating the array object. NumPy in Python offers many ways to do array

indexing.

• Slicing: Just like lists in Python, NumPy arrays can be sliced. As arrays can

be multidimensional, you need to specify a slice for each dimension of the

array.

• Integer array indexing: In this method, lists are passed for indexing for each

dimension. One-to-one mapping of corresponding elements is done to construct

a new arbitrary array.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-indexing/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

• Boolean array indexing: This method is used when we want to pick

elements from the array which satisfy some condition.

Python

Python program to demonstrate

indexing in numpy

import numpy as np

An exemplar array

arr = np.array([[-1, 2, 0, 4],

 [4, -0.5, 6, 0],

 [2.6, 0, 7, 8],

 [3, -7, 4, 2.0]])

Slicing array

temp = arr[:2, ::2]

print ("Array with first 2 rows and alternate"

 "columns(0 and 2):\n", temp)

Integer array indexing example

temp = arr[[0, 1, 2, 3], [3, 2, 1, 0]]

print ("\nElements at indices (0, 3), (1, 2), (2, 1),"

 "(3, 0):\n", temp)

boolean array indexing example

cond = arr > 0 # cond is a boolean array

temp = arr[cond]

print ("\nElements greater than 0:\n", temp)

Output:

Array with first 2 rows and alternatecolumns(0 and 2):

 [[-1. 0.]

 [4. 6.]]

Elements at indices (0, 3), (1, 2), (2, 1),(3, 0):

 [4. 6. 0. 3.]

Elements greater than 0:

 [2. 4. 4. 6. 2.6 7. 8. 3. 4. 2.]

NumPy Basic Operations

The Plethora of built-in arithmetic functions is provided in Python NumPy.
1. Operations on a single NumPy array

We can use overloaded arithmetic operators to do element-wise operations on the

array to create a new array. In the case of +=, -=, *= operators, the existing array is

modified.

Python

Python program to demonstrate

basic operations on single array

import numpy as np

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

a = np.array([1, 2, 5, 3])

add 1 to every element

print ("Adding 1 to every element:", a+1)

subtract 3 from each element

print ("Subtracting 3 from each element:", a-3)

multiply each element by 10

print ("Multiplying each element by 10:", a*10)

square each element

print ("Squaring each element:", a**2)

modify existing array

a *= 2

print ("Doubled each element of original array:", a)

transpose of array

a = np.array([[1, 2, 3], [3, 4, 5], [9, 6, 0]])

print ("\nOriginal array:\n", a)

print ("Transpose of array:\n", a.T)

Output:

Adding 1 to every element: [2 3 6 4]

Subtracting 3 from each element: [-2 -1 2 0]

Multiplying each element by 10: [10 20 50 30]

Squaring each element: [1 4 25 9]

Doubled each element of original array: [2 4 10 6]

Original array:

 [[1 2 3]

 [3 4 5]

 [9 6 0]]

Transpose of array:

 [[1 3 9]

 [2 4 6]

 [3 5 0]]

NumPy – Unary Operators

Many unary operations are provided as a method of ndarray class. This includes

sum, min, max, etc. These functions can also be applied row-wise or column-wise

by setting an axis parameter.

Python

Python program to demonstrate

unary operators in numpy

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

import numpy as np

arr = np.array([[1, 5, 6],

 [4, 7, 2],

 [3, 1, 9]])

maximum element of array

print ("Largest element is:", arr.max())

print ("Row-wise maximum elements:",

 arr.max(axis = 1))

minimum element of array

print ("Column-wise minimum elements:",

 arr.min(axis = 0))

sum of array elements

print ("Sum of all array elements:",

 arr.sum())

cumulative sum along each row

print ("Cumulative sum along each row:\n",

 arr.cumsum(axis = 1))

Output:

Largest element is: 9

Row-wise maximum elements: [6 7 9]

Column-wise minimum elements: [1 1 2]

Sum of all array elements: 38

Cumulative sum along each row:

[[1 6 12]

 [4 11 13]

 [3 4 13]]

NumPy – Binary Operators

These operations apply to the array elementwise and a new array is created. You

can use all basic arithmetic operators like +, -, /, etc. In the case of +=, -=, =

operators, the existing array is modified.

Python

Python program to demonstrate

binary operators in Numpy

import numpy as np

a = np.array([[1, 2],

 [3, 4]])

b = np.array([[4, 3],

 [2, 1]])

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

add arrays

print ("Array sum:\n", a + b)

multiply arrays (elementwise multiplication)

print ("Array multiplication:\n", a*b)

matrix multiplication

print ("Matrix multiplication:\n", a.dot(b))

Output:

Array sum:

[[5 5]

 [5 5]]

Array multiplication:

[[4 6]

 [6 4]]

Matrix multiplication:

[[8 5]

 [20 13]]

Also Read: Numpy Binary Operations

NymPy’s ufuncs

NumPy provides familiar mathematical functions such as sin, cos, exp, etc. These

functions also operate elementwise on an array, producing an array as output.

Note: All the operations we did above using overloaded operators can be done

using ufuncs like np.add, np.subtract, np.multiply, np.divide, np.sum, etc.

Click & go th first page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/numpy-binary-operations/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Pandas Series is a one-dimensional labeled array capable of holding data of any

type (integer, string, float, python objects, etc.). The axis labels are collectively

called index. Labels need not be unique but must be a hashable type. The object

supports both integer and label-based indexing and provides a host of methods for

performing operations involving the index.

To create Series with any of the methods make sure to import pandas library.

Creating an empty Series: Series() function of Pandas is used to create a series.

A basic series, which can be created is an Empty Series.

• Python3

import pandas as pd

import pandas as pd

 # Creating empty series

ser = pd.Series()

Panda

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-pandas-series/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print(ser)

Output :

Series([], dtype: float64)

By default, the data type of Series is float.

 Creating a series from array: In order to create a series from NumPy array, we

have to import numpy module and have to use array() function.

• Python3

import pandas as pd

import pandas as pd

 # import numpy as np

import numpy as np

simple array

data = np.array(['g', 'e', 'e', 'k', 's'])

 ser = pd.Series(data)

print(ser)

Output:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

By default, the index of the series starts from 0 till the length of series -1.

Creating a series from array with an index: In order to create a series by

explicitly proving index instead of the default, we have to provide a list of elements

to the index parameter with the same number of elements as it is an array.

• Python3

import pandas as pd

import pandas as pd

import numpy as np

import numpy as np

simple array

data = np.array(['g', 'e', 'e', 'k', 's'])

providing an index

ser = pd.Series(data, index=[10, 11, 12, 13, 14])

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print(ser)

Output:

 Creating a series from Lists: In order to create a series from list, we have to first

create a list after that we can create a series from list.

• Python3

import pandas as pd

a simple list

list = ['g', 'e', 'e', 'k', 's']

create series form a list

ser = pd.Series(list)

print(ser)

Output :

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/creating-a-pandas-series-from-lists/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Creating a series from Dictionary: In order to create a series from the dictionary,

we have to first create a dictionary after that we can make a series using dictionary.

Dictionary keys are used to construct indexes of Series.

• Python3

import pandas as pd

a simple dictionary

dict = {'Geeks': 10,

 'for': 20,

 'geeks': 30}

create series from dictionary

ser = pd.Series(dict)

print(ser)

Output:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/creating-a-pandas-series-from-dictionary/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Creating a series from Scalar value: In order to create a series from scalar value,

an index must be provided. The scalar value will be repeated to match the length of

the index.

• Python3

import pandas as pd

import numpy as np

giving a scalar value with index

ser = pd.Series(10, index=[0, 1, 2, 3, 4, 5])

print(ser)

Output:

Creating a series using NumPy functions : In order to create a series using numpy

function, we can use different function of numpy

like numpy.linspace(), numpy.random.radn().

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/create-pandas-series-using-numpy-functions/
https://www.geeksforgeeks.org/numpy-linspace-python/
https://www.geeksforgeeks.org/numpy-random-randn-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

• Python3

import pandas and numpy

import pandas as pd

import numpy as np

series with numpy linspace()

ser1 = pd.Series(np.linspace(3, 33, 3))

print(ser1)

series with numpy linspace()

ser2 = pd.Series(np.linspace(1, 100, 10))

print(& quot

 \n" , ser2)

Output:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Creating a Series using range function:

• Python3

code

import pandas as pd

ser=pd.Series(range(10))

print(ser)

Output:

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

8 8

9 9

dtype: int64

Creating a Series using for loop and list comprehension:

• Python3

import pandas as pd

ser=pd.Series(range(1,20,3), index=[x for x in 'abcdefg'])

print(ser)

Output:

a 1

b 4

c 7

d 10

e 13

f 16

g 19

dtype: int64

Creating a Series using mathematical expressions:

• Python3

import pandas as pd

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

import numpy as np

ser=np.arange(10,15)

serobj=pd.Series(data=ser*5,index=ser)

print(serobj)

Output:

10 50

11 55

12 60

13 65

14 70

dtype: int32

Click & go th first page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python Functions is a block of statements that return the specific task. The idea

is to put some commonly or repeatedly done tasks together and make a function

so that instead of writing the same code again and again for different inputs, we

can do the function calls to reuse code contained in it over and over again.

Some .

Benefits of Using Functions

• Increase Code Readability

• Increase Code Reusability

Python Function Declaration

The syntax to declare a function is:

Syntax of Python Function Declaration

Types of Functions in Python

Below are the different types of functions in Python:

• Built-in library function: These are Standard functions in Python that are

available to use.

• User-defined function: We can create our own functions based on our

requirements.

Creating a Function in Python

We can define a function in Python, using the def keyword. We can add any type

of functionalities and properties to it as we require. By the following example, we

Function

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-built-in-functions/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

can understand how to write a function in Python. In this way we can create

Python function definition by using def keyword.

Python

A simple Python function

def fun():

 print("Welcome to GFG")

Calling a Function in Python

After creating a function in Python we can call it by using the name of the

functions Python followed by parenthesis containing parameters of that particular

function. Below is the example for calling def function Python.

Python

A simple Python function

def fun():

 print("Welcome to GFG")

Driver code to call a function

fun()

Output:

Welcome to GFG

Python Function with Parameters

If you have experience in C/C++ or Java then you must be thinking about

the return type of the function and data type of arguments. That is possible in

Python as well (specifically for Python 3.5 and above).

Python Function Syntax with Parameters

 def function_name(parameter: data_type) -> return_type:

 """Docstring"""

 # body of the function

 return expression

The following example uses arguments and parameters that you will learn later in

this article so you can come back to it again if not understood.

Python

def add(num1: int, num2: int) -> int:

 """Add two numbers"""

 num3 = num1 + num2

 return num3

Driver code

num1, num2 = 5, 15

ans = add(num1, num2)

print(f"The addition of {num1} and {num2} results {ans}.")

Output:

The addition of 5 and 15 results 20.

Note: The following examples are defined using syntax 1, try to convert them in

syntax 2 for practice.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/deep-dive-into-parameters-and-arguments-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

some more functions

def is_prime(n):

 if n in [2, 3]:

 return True

 if (n == 1) or (n % 2 == 0):

 return False

 r = 3

 while r * r <= n:

 if n % r == 0:

 return False

 r += 2

 return True

print(is_prime(78), is_prime(79))

Output:

False True

Python Function Arguments

Arguments are the values passed inside the parenthesis of the function. A function

can have any number of arguments separated by a comma.

In this example, we will create a simple function in Python to check whether the

number passed as an argument to the function is even or odd.

Python

A simple Python function to check

whether x is even or odd

def evenOdd(x):

 if (x % 2 == 0):

 print("even")

 else:

 print("odd")

Driver code to call the function

evenOdd(2)

evenOdd(3)

Output:

even

odd

Types of Python Function Arguments

Python supports various types of arguments that can be passed at the time of the

function call. In Python, we have the following function argument types in

Python:

• Default argument

• Keyword arguments (named arguments)

• Positional arguments

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

• Arbitrary arguments (variable-length arguments *args and **kwargs)

Let’s discuss each type in detail.

Default Arguments

A default argument is a parameter that assumes a default value if a value is not

provided in the function call for that argument. The following example illustrates

Default arguments to write functions in Python.

Python

Python program to demonstrate

default arguments

def myFun(x, y=50):

 print("x: ", x)

 print("y: ", y)

Driver code (We call myFun() with only

argument)

myFun(10)

Output:

x: 10

y: 50

Like C++ default arguments, any number of arguments in a function can have a

default value. But once we have a default argument, all the arguments to its right

must also have default values.

Keyword Arguments

The idea is to allow the caller to specify the argument name with values so that

the caller does not need to remember the order of parameters.

Python

Python program to demonstrate Keyword Arguments

def student(firstname, lastname):

 print(firstname, lastname)

Keyword arguments

student(firstname='Geeks', lastname='Practice')

student(lastname='Practice', firstname='Geeks')

Output:

Geeks Practice

Geeks Practice

Positional Arguments

We used the Position argument during the function call so that the first argument

(or value) is assigned to name and the second argument (or value) is assigned to

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/keyword-and-positional-argument-in-python/#:~:text=age%20is%20%2020-,Positional%2DOnly%20Arguments,-Position%2Donly%20arguments

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

age. By changing the position, or if you forget the order of the positions, the values

can be used in the wrong places, as shown in the Case-2 example below, where

27 is assigned to the name and Suraj is assigned to the age.

Python

def nameAge(name, age):

 print("Hi, I am", name)

 print("My age is ", age)

You will get correct output because

argument is given in order

print("Case-1:")

nameAge("Suraj", 27)

You will get incorrect output because

argument is not in order

print("\nCase-2:")

nameAge(27, "Suraj")

Output:

Case-1:

Hi, I am Suraj

My age is 27

Case-2:

Hi, I am 27

My age is Suraj

Arbitrary Keyword Arguments

In Python Arbitrary Keyword Arguments, *args, and **kwargs can pass a

variable number of arguments to a function using special symbols. There are two

special symbols:

• *args in Python (Non-Keyword Arguments)

• **kwargs in Python (Keyword Arguments)

Example 1: Variable length non-keywords argument

Python

Python program to illustrate

*args for variable number of arguments

def myFun(*argv):

 for arg in argv:

 print(arg)

myFun('Hello', 'Welcome', 'to', 'GeeksforGeeks')

Output:

Hello

Welcome

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/args-kwargs-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

to

GeeksforGeeks

Example 2: Variable length keyword arguments

Python

Python program to illustrate

*kwargs for variable number of keyword arguments

def myFun(**kwargs):

 for key, value in kwargs.items():

 print("%s == %s" % (key, value))

Driver code

myFun(first='Geeks', mid='for', last='Geeks')

Output:

first == Geeks

mid == for

last == Geeks

Docstring

The first string after the function is called the Document string or Docstring in

short. This is used to describe the functionality of the function. The use of

docstring in functions is optional but it is considered a good practice.

The below syntax can be used to print out the docstring of a function.

Syntax: print(function_name.__doc__)

Example: Adding Docstring to the function

Python

A simple Python function to check

whether x is even or odd

def evenOdd(x):

 """Function to check if the number is even or odd"""

 if (x % 2 == 0):

 print("even")

 else:

 print("odd")

Driver code to call the function

print(evenOdd.__doc__)

Output:

Function to check if the number is even or odd

Python Function within Functions

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-docstrings/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

A function that is defined inside another function is known as the inner

function or nested function. Nested functions can access variables of the

enclosing scope. Inner functions are used so that they can be protected from

everything happening outside the function.

Python

Python program to

demonstrate accessing of

variables of nested functions

def f1():

 s = 'I love GeeksforGeeks'

 def f2():

 print(s)

 f2()

Driver's code

f1()

Output:

I love GeeksforGeeks

Anonymous Functions in Python

In Python, an anonymous function means that a function is without a name. As

we already know the def keyword is used to define the normal functions and the

lambda keyword is used to create anonymous functions.

Python

Python code to illustrate the cube of a number

using lambda function

def cube(x): return x*x*x

cube_v2 = lambda x : x*x*x

print(cube(7))

print(cube_v2(7))

Output:

343

343

Recursive Functions in Python

Recursion in Python refers to when a function calls itself. There are many

instances when you have to build a recursive function to solve Mathematical and

Recursive Problems.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-lambda-anonymous-functions-filter-map-reduce/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Using a recursive function should be done with caution, as a recursive function

can become like a non-terminating loop. It is better to check your exit statement

while creating a recursive function.

Python

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n - 1)

print(factorial(4))

Output

24

Here we have created a recursive function to calculate the factorial of the number.

You can see the end statement for this function is when n is equal to 0.

Return Statement in Python Function

The function return statement is used to exit from a function and go back to the

function caller and return the specified value or data item to the caller. The syntax

for the return statement is:

return [expression_list]

The return statement can consist of a variable, an expression, or a constant which

is returned at the end of the function execution. If none of the above is present

with the return statement a None object is returned.

Example: Python Function Return Statement

Python

def square_value(num):

 """This function returns the square

 value of the entered number"""

 return num**2

print(square_value(2))

print(square_value(-4))

Output:

4

16

Pass by Reference and Pass by Value

One important thing to note is, in Python every variable name is a reference. When

we pass a variable to a function Python, a new reference to the object is created.

Parameter passing in Python is the same as reference passing in Java.

Python

Here x is a new reference to same list lst

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

def myFun(x):

 x[0] = 20

Driver Code (Note that lst is modified

after function call.

lst = [10, 11, 12, 13, 14, 15]

myFun(lst)

print(lst)

Output:

[20, 11, 12, 13, 14, 15]

When we pass a reference and change the received reference to something else,

the connection between the passed and received parameters is broken. For

example, consider the below program as follows:

Python

def myFun(x):

 # After below line link of x with previous

 # object gets broken. A new object is assigned

 # to x.

 x = [20, 30, 40]

Driver Code (Note that lst is not modified

after function call.

lst = [10, 11, 12, 13, 14, 15]

myFun(lst)

print(lst)

Output:

[10, 11, 12, 13, 14, 15]

Another example demonstrates that the reference link is broken if we assign a new

value (inside the function).

Python

def myFun(x):

 # After below line link of x with previous

 # object gets broken. A new object is assigned

 # to x.

 x = 20

Driver Code (Note that x is not modified

after function call.

x = 10

myFun(x)

print(x)

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Output:

10

Exercise: Try to guess the output of the following code.

Python

def swap(x, y):

 temp = x

 x = y

 y = temp

Driver code

x = 2

y = 3

swap(x, y)

print(x)

print(y)

Output:

2

3

Quick Links

• Quiz on Python Functions

• Difference between Method and Function in Python

• First Class functions in Python

• Recent articles on Python Functions.

FAQs- Python Functions

What is function in Python?

Python function is a block of code, that runs only when it is called. It is

programmed to return the specific task. You can pass values in functions called

parameters. It helps in performing repetitive tasks.

What are the 4 types of Functions in Python?

The main types of functions in Python are:

• Built-in function

• User-defined function

• Lambda functions

• Recursive functions

How to Write a Function in Python?

To write a function in Python you can use the def keyword and then write the

function name. You can provide the function code after using ‘:’. Basic syntax to

define a function is:

def function_name():

#statement

What are the parameters of a function in Python?

Parameters in Python are the variables that take the values passed as arguments

when calling the functions. A function can have any number of parameters. You

can also set default value to a parameter in Python.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/functions-python-gq/
https://www.geeksforgeeks.org/difference-method-function-python/
https://www.geeksforgeeks.org/first-class-functions-python/
https://www.geeksforgeeks.org/tag/python-functions/
https://www.geeksforgeeks.org/types-of-functions/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

What is Python main function?

The Python main function refers to the entry point of a Python program. It is often

defined using the if __name__ == "__main__": construct to ensure that certain

code is only executed when the script is run directly, not when it is imported as a

module.

Click & go th first page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

What is an Array in Python?

An array is a collection of items stored at contiguous memory locations. The idea

is to store multiple items of the same type together. This makes it easier to

calculate the position of each element by simply adding an offset to a base value,

i.e., the memory location of the first element of the array (generally denoted by

the name of the array).

Create an Array in Python

Array in Python can be created by importing an array

module. array(data_type, value_list) is used to create array in Python with data

type and value list specified in its arguments.

In below code Python create array : one of integers and one of doubles. It then

prints the contents of each array to the console.

Python

import array as arr

a = arr.array('i', [1, 2, 3])

print("The new created array is : ", end=" ")

for i in range(0, 3):

 print(a[i], end=" ")

print()

b = arr.array('d', [2.5, 3.2, 3.3])

print("\nThe new created array is : ", end=" ")

for i in range(0, 3):

 print(b[i], end=" ")

Output

The new created array is : 1 2 3

Array

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

The new created array is : 2.5 3.2 3.3

Complexities for Creation of Arrays:

TimeComplexity: O(1)

Auxiliary Space: O(n)

Some of the data types are mentioned below which will help in create array in

Python 3.8

of different data types.

Now we will see how to use array in Python 3.8 with example.

Adding Elements to a Array

Elements can be added to the Python Array by using built-in insert() function.

Insert is used to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given index

of array. append() is also used to add the value mentioned in its arguments at the

end of the Python array.

3.2, 3.3] is created and printed before and after appending the double 4.4 to the

array.

Python

import array as arr

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-insert/
https://www.geeksforgeeks.org/append-extend-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

a = arr.array('i', [1, 2, 3])

print("Array before insertion : ", end=" ")

for i in range(0, 3):

 print(a[i], end=" ")

print()

a.insert(1, 4)

print("Array after insertion : ", end=" ")

for i in (a):

 print(i, end=" ")

print()

b = arr.array('d', [2.5, 3.2, 3.3])

print("Array before insertion : ", end=" ")

for i in range(0, 3):

 print(b[i], end=" ")

print()

b.append(4.4)

print("Array after insertion : ", end=" ")

for i in (b):

 print(i, end=" ")

print()

Output

Array before insertion : 1 2 3

Array after insertion : 1 4 2 3

Array before insertion : 2.5 3.2 3.3

Array after insertion : 2.5 3.2 3.3 4.4

Complexities for Adding elements to the Arrays

Time Complexity: O(1)/O(n) (O(1) – for inserting elements at the end of the

array, O(n) – for inserting elements at the beginning of the array and to the full

array

Auxiliary Space: O(1)

Accessing Elements from the Array

In order to access the array items refer to the index number. Use the index operator

[] to access an item in a array in Python. The index must be an integer.

Below, code shows first how to Python import array and use of indexing to access

elements in arrays. The a[0] expression accesses the first element of the array a,

which is 1. The a[3] expression accesses the fourth element of the array a, which

is 4. Similarly, the b[1] expression accesses the second element of the array b,

which is 3.2, and the b[2] expression accesses the third element of the array b,

which is 3.3.

Python

import array as arr

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

a = arr.array('i', [1, 2, 3, 4, 5, 6])

print("Access element is: ", a[0])

print("Access element is: ", a[3])

b = arr.array('d', [2.5, 3.2, 3.3])

print("Access element is: ", b[1])

print("Access element is: ", b[2])

Output

Access element is: 1

Access element is: 4

Access element is: 3.2

Access element is: 3.3

Complexities for accessing elements in the Arrays

Time Complexity: O(1)

Auxiliary Space: O(1)

Removing Elements from the Array

Elements can be removed from the Python array by using built-

in remove() function but an Error arises if element doesn’t exist in the set.

Remove() method only removes one element at a time, to remove range of

elements, iterator is used. pop() function can also be used to remove and return an

element from the array, but by default it removes only the last element of the

array, to remove element from a specific position of the array, index of the

element is passed as an argument to the pop() method.

Note – Remove method in List will only remove the first occurrence of the

searched element.

Below, code shows how to Python import array, how to create, print, remove

elements from, and access elements of an array in Python. It imports

the array module, which is used to work with arrays. It creates an array of integers

in and Python print arrays or prints the original array. It then removes an element

from the array and prints the modified array. Finally, it removes all occurrences

of a specific element from the array and prints the updated array

Python

import array

arr = array.array('i', [1, 2, 3, 1, 5])

print("The new created array is : ", end="")

for i in range(0, 5):

 print(arr[i], end=" ")

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-remove/
https://www.geeksforgeeks.org/python-list-pop/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print("\r")

print("The popped element is : ", end="")

print(arr.pop(2))

print("The array after popping is : ", end="")

for i in range(0, 4):

 print(arr[i], end=" ")

print("\r")

arr.remove(1)

print("The array after removing is : ", end="")

for i in range(0, 3):

 print(arr[i], end=" ")

Output

The new created array is : 1 2 3 1 5

The popped element is : 3

The array after popping is : 1 2 1 5

The array after removing is : 2 1 5

Complexities for Removing elements in the Arrays

Time Complexity: O(1)/O(n) (O(1) – for removing elements at the end of the

array, O(n) – for removing elements at the beginning of the Python create array

and to the full array

Auxiliary Space: O(1)

Slicing of an Array

In Python array, there are multiple ways to print the whole array with all the

elements, but to print a specific range of elements from the array, we use Slice

operation. Slice operation is performed on array with the use of colon(:). To print

elements from beginning to a range use [:Index], to print elements from end use

[:-Index], to print elements from specific Index till the end use [Index:], to print

elements within a range, use [Start Index:End Index] and to print whole List with

the use of slicing operation, use [:]. Further, to print whole array in reverse order,

use [::-1].

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-comprehension-and-slicing/
https://www.geeksforgeeks.org/python-list-comprehension-and-slicing/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

This code employs slicing to extract elements or subarrays from an array. It starts

with an initial array of integers and creates an array from the list. The code slices

the array to extract elements from index 3 to 8, from index 5 to the end, and the

entire array and In below code Python print array as The sliced arrays are then

printed to demonstrate the slicing operations.

Python

import array as arr

l = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

a = arr.array('i', l)

print("Initial Array: ")

for i in (a):

 print(i, end=" ")

Sliced_array = a[3:8]

print("\nSlicing elements in a range 3-8: ")

print(Sliced_array)

Sliced_array = a[5:]

print("\nElements sliced from 5th "

 "element till the end: ")

print(Sliced_array)

Sliced_array = a[:]

print("\nPrinting all elements using slice operation: ")

print(Sliced_array)

Output

Initial Array:

1 2 3 4 5 6 7 8 9 10

Slicing elements in a range 3-8:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

array('i', [4, 5, 6, 7, 8])

Elements sliced from 5th element till the end:

array('i', [6, 7, 8, 9, 10])

Printing all elements...

Searching Element in an Array

In order to search an element in the array we use a python in-built index() method.

This function returns the index of the first occurrence of value mentioned in

arguments.

Example: The code demonstrates how to create array in Python, print its

elements, and find the indices of specific elements. It imports the array module,

creates an array of integers, prints the array using a for loop, and then uses

the index() method to find the indices of the first occurrences of the integers 2 and

1.

Python

import array

arr = array.array('i', [1, 2, 3, 1, 2, 5])

print("The new created array is : ", end="")

for i in range(0, 6):

 print(arr[i], end=" ")

print("\r")

print("The index of 1st occurrence of 2 is : ", end="")

print(arr.index(2))

print("The index of 1st occurrence of 1 is : ", end="")

print(arr.index(1))

Output

The new created array is : 1 2 3 1 2 5

The index of 1st occurrence of 2 is : 1

The index of 1st occurrence of 1 is : 0

Complexities for searching elements in the Arrays

Time Complexity: O(n)

Auxiliary Space: O(1)

Updating Elements in a Array

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-index/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In order to update an element in the array we simply reassign a new value to the

desired index we want to update.

Example: This code illustrates the functionality of modifying elements within an

array using indexing. It imports the array module, creates an array of integers, and

prints the initial array. Then, it modifies two elements of the array at specific

indexes and prints the updated array. This serves to demonstrate how indexing

allows for dynamic manipulation of array contents.

Python

import array

arr = array.array('i', [1, 2, 3, 1, 2, 5])

print("Array before updation : ", end="")

for i in range(0, 6):

 print(arr[i], end=" ")

print("\r")

arr[2] = 6

print("Array after updation : ", end="")

for i in range(0, 6):

 print(arr[i], end=" ")

print()

arr[4] = 8

print("Array after updation : ", end="")

for i in range(0, 6):

 print(arr[i], end=" ")

Output

Array before updation : 1 2 3 1 2 5

Array after updation : 1 2 6 1 2 5

Array after updation : 1 2 6 1 8 5

Complexities for updating elements in the Arrays

Time Complexity: O(1)

Auxiliary Space: O(1)

Reversing Elements in a Array

In order to reverse elements of an array we need to simply use reverse method.

Example: The presented code demonstrates the functionality of reversing the

order of elements within an array using the reverse() method. It imports

the array module, creates an array of integers, prints the original array, reverses

the order of elements using reverse(), and then prints the reversed array. This

effectively illustrates the ability to modify the arrangement of elements in an

array.

Python

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

import array

my_array = array.array('i', [1, 2, 3, 4, 5])

print("Original array:", *my_array)

my_array.reverse()

print("Reversed array:", *my_array)

Output

Original array: 1 2 3 4 5

Reversed array: 5 4 3 2 1

Complexities for reversing elements in the Arrays:

Time Complexity: O(n)

Auxiliary Space: O(1)

Extend Element from Array

In the article, we will cover the python list extend() and try to understand

the Python list extend().

What is extend element from array?

In Python, an array is used to store multiple values or elements of the same

datatype in a single variable. The extend() function is simply used to attach an

item from iterable to the end of the array. In simpler terms, this method is used to

add an array of values to the end of a given or existing array.

Syntax of list extend()

The syntax of the extend() method:

list.extend(iterable)

Here, all the element of iterable are added to the end of list1

Example 1:

The provided code demonstrates the capability of extending an array to include

additional elements. It imports the array module using an alias, creates an array

of integers, prints the array before extension, extends the array using

the extend() method, and finally prints the extended array. This concisely

illustrates the ability to add elements to an existing array structure

Python

import array as arr

a = arr.array('i', [1, 2, 3,4,5])

print("The before array extend : ", end =" ")

for i in range (0, 5):

 print (a[i], end =" ")

print()

a.extend([6,7,8,9,10])

print("\nThe array after extend :",end=" ")

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

for i in range(0,10):

 print(a[i],end=" ")

print()

Output

The before array extend : 1 2 3 4 5

The array after extend : 1 2 3 4 5 6 7 8 9 10

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

A Python dictionary is a data structure that stores the value in key:value pairs.

Example:

Python dictionaries are essential for efficient data mapping and manipulation in

programming. To deepen your understanding of dictionaries and explore

advanced techniques in data handling, consider enrolling in our Complete

Machine Learning & Data Science Program . This course covers everything

from basic dictionary operations to advanced data processing methods,

empowering you to become proficient in Python programming and data analysis.

Python

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}

print(Dict)

Output:

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Python Dictionary Syntax

dict_var = {key1 : value1, key2 : value2, …..}

What is a Dictionary in Python?

Dictionaries in Python is a data structure, used to store values in key:value format.

This makes it different from lists, tuples, and arrays as in a dictionary each key

has an associated value.

Note: As of Python version 3.7, dictionaries are ordered and can not contain

duplicate keys.

How to Create a Dictionary

In Python , a dictionary can be created by placing a sequence of elements within

curly {} braces, separated by a ‘comma’.

The dictionary holds pairs of values, one being the Key and the other

corresponding pair element being its Key:value .

Values in a dictionary can be of any data type and can be duplicated, whereas keys

can’t be repeated and must be immutable .

Note – Dictionary keys are case sensitive, the same name but different cases of

Key will be treated distinctly.

The code demonstrates creating dictionaries with different types of keys. The first

dictionary uses integer keys, and the second dictionary uses a mix of string and

integer keys with corresponding values. This showcases the flexibility of Python

dictionaries in handling various data types as keys.

Dictionary

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://gfgcdn.com/tu/Q3A/
https://gfgcdn.com/tu/Q3A/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}

print("\nDictionary with the use of Integer Keys: ")

print(Dict)

Dict = {'Name': 'Geeks', 1: [1, 2, 3, 4]}

print("\nDictionary with the use of Mixed Keys: ")

print(Dict)

Output

Dictionary with the use of Integer Keys:

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with the use of Mixed Keys:

{'Name': 'Geeks', 1: [1, 2, 3, 4]}

Dictionary Example

A dictionary can also be created by the built-in function dict(). An empty

dictionary can be created by just placing curly braces{}.

Different Ways to Create a Python Dictionary

The code demonstrates different ways to create dictionaries in Python. It first

creates an empty dictionary, and then shows how to create dictionaries using

the dict() constructor with key-value pairs specified within curly braces and as a

list of tuples.

Python

Dict = {}

print("Empty Dictionary: ")

print(Dict)

Dict = dict({1: 'Geeks', 2: 'For', 3: 'Geeks'})

print("\nDictionary with the use of dict(): ")

print(Dict)

Dict = dict([(1, 'Geeks'), (2, 'For')])

print("\nDictionary with each item as a pair: ")

print(Dict)

Output:

Empty Dictionary:

{}

Dictionary with the use of dict():

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with each item as a pair:

{1: 'Geeks', 2: 'For'}

Complexities for Creating a Dictionary:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Adding Elements to a Dictionary

The addition of elements can be done in multiple ways. One value at a time can

be added to a Dictionary by defining value along with the key e.g. Dict[Key] =

‘Value’.

Updating an existing value in a Dictionary can be done by using the built-

in update() method. Nested key values can also be added to an existing

Dictionary.

Note- While adding a value, if the key-value already exists, the value gets updated

otherwise a new Key with the value is added to the Dictionary.

Example: Add Items to a Python Dictionary with Different DataTypes

The code starts with an empty dictionary and then adds key-value pairs to it. It

demonstrates adding elements with various data types, updating a key’s value,

and even nesting dictionaries within the main dictionary. The code shows how to

manipulate dictionaries in Python.

Python

Dict = {}

print("Empty Dictionary: ")

print(Dict)

Dict[0] = 'Geeks'

Dict[2] = 'For'

Dict[3] = 1

print("\nDictionary after adding 3 elements: ")

print(Dict)

Dict['Value_set'] = 2, 3, 4

print("\nDictionary after adding 3 elements: ")

print(Dict)

Dict[2] = 'Welcome'

print("\nUpdated key value: ")

print(Dict)

Dict[5] = {'Nested': {'1': 'Life', '2': 'Geeks'}}

print("\nAdding a Nested Key: ")

print(Dict)

Output:

Empty Dictionary:

{}

Dictionary after adding 3 elements:

{0: 'Geeks', 2: 'For', 3: 1}

Dictionary after adding 3 elements:

{0: 'Geeks', 2: 'For', 3: 1, 'Value_set': (2, 3, 4)}

Updated key value:

{0: 'Geeks', 2: 'Welcome', 3: 1, 'Value_set': (2, 3, 4)}

Adding a Nested Key:

{0: 'Geeks', 2: 'Welcome', 3: 1, 'Value_set': (2, 3, 4), 5:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

{'Nested': {'1': 'Life', '2': 'Geeks'}}}

Complexities for Adding Elements in a Dictionary:

• Time complexity: O(1)/O(n)

• Space complexity: O(1)

Accessing Elements of a Dictionary

To access the items of a dictionary refer to its key name. Key can be used inside

square brackets.

Access a Value in Python Dictionary

The code demonstrates how to access elements in a dictionary using keys. It

accesses and prints the values associated with the keys ‘name’ and 1, showcasing

that keys can be of different data types (string and integer).

Python

Dict = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}

print("Accessing a element using key:")

print(Dict['name'])

print("Accessing a element using key:")

print(Dict[1])

Output:

Accessing a element using key:

For

Accessing a element using key:

Geeks

There is also a method called get() that will also help in accessing the element

from a dictionary. This method accepts key as argument and returns the value.

Complexities for Accessing elements in a Dictionary:

• Time complexity: O(1)

• Space complexity: O(1)

 Access a Value in Dictionary using get() in Python

The code demonstrates accessing a dictionary element using the get() method

Dict = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}

print("Accessing a element using get:")

print(Dict.get(3))

Output:

Accessing a element using get:

Geeks

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/get-method-dictionaries-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Accessing an Element of a Nested Dictionary

To access the value of any key in the nested dictionary, use indexing [] syntax.

Dict = {'Dict1': {1: 'Geeks'},

 'Dict2': {'Name': 'For'}}

print(Dict['Dict1'])

print(Dict['Dict1'][1])

print(Dict['Dict2']['Name'])

Output:

{1: 'Geeks'}

Geeks

For

Deleting Elements using ‘del’ Keyword

The items of the dictionary can be deleted by using the del keyword as given

below.

Dict = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}

print("Dictionary =")

print(Dict)

del(Dict[1])

print("Data after deletion Dictionary=")

print(Dict)

Output

Dictionary ={1: 'Geeks', 'name': 'For', 3: 'Geeks'}

Data after deletion Dictionary={'name': 'For', 3: 'Geeks'}

Dictionary Methods

Here is a list of in-built dictionary functions with their description.

Method Description

dict.clear()
Remove all the elements from

the dictionary

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Method Description

dict.copy()
Returns a copy of the

dictionary

dict.get(key, default = “None”)
Returns the value of specified

key

dict.items()
Returns a list containing a

tuple for each key value pair

dict.keys()
Returns a list containing

dictionary’s keys

dict.update(dict2)
Updates dictionary with

specified key-value pairs

dict.values()
Returns a list of all the values

of dictionary

pop()
Remove the element with

specified key

popItem()
Removes the last inserted

key-value pair

dict.setdefault(key,default= “None”)
set the key to the default

value if the key is not

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Method Description

specified in the dictionary

dict.has_key(key)
returns true if the dictionary

contains the specified key.

-Click go to First page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In Python, a list is a collection data type that is ordered, mutable, and allows duplicate

elements. Lists are one of the most commonly used data structures and provide a

versatile way to work with sequences of elements. Here is a detailed explanation of

lists in Python:

Creating a List

You can create a list by placing elements inside square brackets [], separated by

commas.

Creating a list with different types of elements

my_list = [1, 2, 3, "apple", "banana", 4.5, True]

print(my_list)

Accessing Elements

You can access elements in a list using indexing. Python uses zero-based indexing,

meaning the first element has an index of 0

Accessing the first element

print(my_list[0]) # Output: 1

Accessing the fourth element

print(my_list[3]) # Output: apple

Accessing the last element

print(my_list[-1]) # Output: True

Slicing a List

You can retrieve a subset of a list by using slicing. Slicing is done using the colon :

operator.

Slicing from index 1 to 4 (excluding index 4)

print(my_list[1:4]) # Output: [2, 3, 'apple']

Slicing from the beginning to index 3 (excluding index 3)

print(my_list[:3]) # Output: [1, 2, 3]

Slicing from index 2 to the end

print(my_list[2:]) # Output: [3, 'apple', 'banana', 4.5, True]

Modifying Elements

List

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Since lists are mutable, you can change their elements.

Changing the second element

my_list[1] = "orange"

print(my_list) # Output: [1, 'orange', 3, 'apple', 'banana', 4.5, True]

Adding Elements

You can add elements to a list using methods like append(), insert(), and extend().

Appending an element to the end of the list

my_list.append("grape")

print(my_list) # Output: [1, 'orange', 3, 'apple', 'banana', 4.5, True, 'grape']

Inserting an element at a specific index

my_list.insert(2, "cherry")

print(my_list) # Output: [1, 'orange', 'cherry', 3, 'apple', 'banana', 4.5, True, 'grape']

Extending the list with another list

my_list.extend([7, 8, 9])

print(my_list) # Output: [1, 'orange', 'cherry', 3, 'apple', 'banana', 4.5, True, 'grape', 7,

8, 9]

Removing Elements

You can remove elements from a list using methods like remove(), pop(), and del.

Removing a specific element by value

my_list.remove("banana")

print(my_list) # Output: [1, 'orange', 'cherry', 3, 'apple', 4.5, True, 'grape', 7, 8, 9]

Removing an element by index

my_list.pop(3)

print(my_list) # Output: [1, 'orange', 'cherry', 'apple', 4.5, True, 'grape', 7, 8, 9]

Removing the last element

my_list.pop()

print(my_list) # Output: [1, 'orange', 'cherry', 'apple', 4.5, True, 'grape', 7, 8]

Deleting an element by index using `del`

del my_list[2]

print(my_list) # Output: [1, 'orange', 'apple', 4.5, True, 'grape', 7, 8]

List Comprehensions

List comprehensions provide a concise way to create lists. They consist of brackets

containing an expression followed by a for clause.

python

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Copy code

Creating a list of squares from 0 to 9

squares = [x**2 for x in range(10)]

print(squares) # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Common List Methods

• append(x): Add an item to the end of the list.

• extend(iterable): Extend the list by appending all the items from the iterable.

• insert(i, x): Insert an item at a given position.

• remove(x): Remove the first item from the list whose value is equal to x.

• pop([i]): Remove the item at the given position in the list and return it.

• clear(): Remove all items from the list.

• index(x[, start[, end]]): Return the index in the list of the first item whose value

is equal to x.

• count(x): Return the number of times x appears in the list.

• sort(key=None, reverse=False): Sort the items of the list in place.

• reverse(): Reverse the elements of the list in place.

• copy(): Return a shallow copy of the list.

Lists are powerful and versatile, making them a fundamental part of Python

programming.

Difference Between List and Array in
Python

List Array

Can consist of elements belonging
to different data types

Only consists of elements belonging to
the same data type

No need to explicitly import a
module for the declaration

Need to explicitly import
the array module for declaration

Cannot directly handle arithmetic
operations

Can directly handle arithmetic
operations

Preferred for a shorter sequence of
data items

Preferred for a longer sequence of data
items

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

List Array

Greater flexibility allows easy
modification (addition, deletion) of

data

Less flexibility since addition, and
deletion has to be done element-wise

The entire list can be printed
without any explicit looping

A loop has to be formed to print or
access the components of the array

Consume larger memory for easy
addition of elements

Comparatively more compact in
memory size

Nested lists can be of variable size Nested arrays has to be of same size.

Can perform direct operations
using functions like:

count() – for counting a particular
element in the list

sort() – sort the complete list
max() – gives maximum of the list
min() – gives minimum of the list

sum() – gives sum of all the
elements in list for integer list

index() – gives first index of the
element specified

append() – adds the element to the
end of the list

remove() – removes the element
specified

No need to import anything to use
these functions.

and many more…

Need to import proper modules to
perform these operations.

Example:
my_list = [1, 2, 3, 4]

Example:
import array

arr = array.array(‘i’, [1, 2, 3])

-Go to first page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
/
/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python While Loop

Until a specified criterion is true, a block of statements will be continuously

executed in a Python while loop. And the line in the program that follows the loop

is run when the condition changes to false.

Syntax of Python While

while expression:

 statement(s)

In Python, all the statements indented by the same number of character spaces after

a programming construct are considered to be part of a single block of code. Python

uses indentation as its method of grouping statements.

• Python3

prints Hello Geek 3 Times

count = 0

while (count < 3):

 count = count+1

 print("Hello Geek")

Output:

Hello Geek

Hello Geek

Hello Geek

See this for an example where a while loop is used for iterators. As mentioned in

the article, it is not recommended to use a while loop for iterators in python.

Python for Loop

Control flow loop

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/using-iterations-in-python-effectively/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In Python, there is no C style for loop, i.e., for (i=0; i<n; i++). There is a “for in”

loop which is similar to for each loop in other languages.

Syntax of Python for Loop

for iterator_var in sequence:

 statements(s)

It can be used to iterate over iterators and a range.

• Python3

Iterating over a list

print("List Iteration")

l = ["geeks", "for", "geeks"]

for i in l:

 print(i)

Iterating over a tuple (immutable)

print("\nTuple Iteration")

t = ("geeks", "for", "geeks")

for i in t:

 print(i)

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/g-fact-40-foreach-in-c-and-java/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Iterating over a String

print("\nString Iteration")

s = "Geeks"

for i in s :

 print(i)

Iterating over dictionary

print("\nDictionary Iteration")

d = dict()

d['xyz'] = 123

d['abc'] = 345

for i in d :

 print("%s %d" %(i, d[i]))

Output:

List Iteration

geeks

for

geeks

Tuple Iteration

geeks

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

for

geeks

String Iteration

G

e

e

k

s

Dictionary Iteration

xyz 123

abc 345

Time complexity: O(n), where n is the number of elements in the iterable (list,

tuple, string, or dictionary).

Auxiliary space: O(1), as the space used by the program does not depend on the

size of the iterable.

We can use a for-in loop for user-defined iterators. See this for example.

Python Nested Loops

Python programming language allows using one loop inside another loop. The

following section shows a few examples to illustrate the concept.

Syntax of Python Nested for Loop

The syntax for a nested for loop statement in Python programming language is as

follows:

for iterator_var in sequence:

 for iterator_var in sequence:

 statements(s)

 statements(s)

Syntax of Python Nested while Loop

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/iterators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

The syntax for a nested while loop statement in Python programming language is

as follows:

while expression:

 while expression:

 statement(s)

 statement(s)

A final note on loop nesting is that we can put any type of loop inside of any other

type of loop. For example, a for loop can be inside a while loop or vice versa.

• Python3

from __future__ import print_function

for i in range(1, 5):

 for j in range(i):

 print(i, end=' ')

 print()

Output:

1

2 2

3 3 3

4 4 4 4

Python Loop Control Statements

Loop control statements change execution from their normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope are

destroyed. Python supports the following control statements.

Python Continue

It returns the control to the beginning of the loop.

• Python3

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Prints all letters except 'a' and 'u'

for letter in 'gautam':

 if letter == 'a' or letter == 'u':

 continue

 print('Current Letter :', letter)

Output:

Current Letter : g

Current Letter : t

Current Letter : m

Python Break

It brings control out of the loop.

• Python3

for letter in 'geeksforgeeks':

 # break the loop as soon it sees 'e'

 # or 's'

 if letter == 'e' or letter == 's':

 break

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print('Current Letter :', letter)

Output:

Current Letter : e

Python Pass

We use pass statements to write empty loops. Pass is also used for empty control

statements, functions, and classes.

• Python3

An empty loop

for letter in 'geeksforgeeks':

 pass

print('Last Letter :', letter)

Output:

Last Letter : s

Click to go in front page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In both real life and programming, decision-making is crucial. We often face

situations where we need to make choices, and based on those choices, we

determine our next actions. Similarly, in programming, we encounter scenarios

where we must make decisions to control the flow of our code.

Conditional statements in Python play a key role in determining the direction of

program execution. Among these, If-Else statements are fundamental, providing a

way to execute different blocks of code based on specific conditions. As the name

suggests, If-Else statements offer two paths, allowing for different outcomes

depending on the condition evaluated.

Types of Control Flow in Python

• Python If Statement

• Python If Else Statement

• Python Nested If Statement

• Python Elif

• Ternary Statement | Short Hand If Else Statement

Python If Statement

The if statement is the most simple decision-making statement. It is used to decide

whether a certain statement or block of statements will be executed or not.

Flowchart of If Statement

Let’s look at the flow of code in the Python If statements.

Control Flow : Conditional block

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/conditional-statements-in-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Flowchart of Python if statement

Syntax of If Statement in Python

Here, the condition after evaluation will be either true or false. if the statement

accepts boolean values – if the value is true then it will execute the block of

statements below it otherwise not.

#if syntax Python

if condition:

 # Statements to execute if

 # condition is true

As we know, Python uses indentation to identify a block. So the block under the

Python if statements will be identified as shown in the below example:

if condition:

 statement1

statement2

Here if the condition is true, if block

will consider only statement1 to be inside

its block.

Example of Python if Statement

As the condition present in the if statements in Python is false. So, the block below

the if statement is executed.

Python

python program to illustrate If statement

i = 10

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/indentation-in-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

if (i > 15):

 print("10 is less than 15")

print("I am Not in if")

Output:

I am Not in if

Python If Else Statement

The if statement alone tells us that if a condition is true it will execute a block of

statements and if the condition is false it won’t. But if we want to do something

else if the condition is false, we can use the else statement with the if statement

Python to execute a block of code when the Python if condition is false.

Flowchart of If Else Statement

Let’s look at the flow of code in an if else Python statement.

Syntax of If Else in Python

if(condition):

 #Executesthisblockif

 #conditionistrue

else:

 #Executesthisblockif

 # condition is false

Example of Python If Else Statement

The block of code following the else if in Python, the statement is executed as the

condition present in the if statement is false after calling the statement which is not

in the block(without spaces).

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

python program to illustrate else if in Python statement

#!/usr/bin/python

i = 20

if (i < 15):

 print("i is smaller than 15")

 print("i'm in if Block")

else:

 print("i is greater than 15")

 print("i'm in else Block")

print("i'm not in if and not in else Block")

Output:

iisgreaterthan15

i'minelseBlock

i'm not in if and not in else Block

If Else in Python using List Comprehension

In this example, we are using an Python else if statement in a list

comprehension with the condition that if the element of the list is odd then its digit

sum will be stored else not.

Python

Explicit function

def digitSum(n):

 dsum = 0

 for ele in str(n):

 dsum += int(ele)

 return dsum

Initializing list

List = [367, 111, 562, 945, 6726, 873]

Using the function on odd elements of the list

newList = [digitSum(i) for i in List if i & 1]

Displaying new list

print(newList)

Output :

[16, 3, 18, 18]

Python Nested If Statement

A nested if is an if statement that is the target of another if statement. Nested if

statements mean an if statement inside another if statement.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-list-comprehension
https://www.geeksforgeeks.org/python-list-comprehension
https://www.geeksforgeeks.org/nested-if-statement-in-python

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Yes, Python allows us to nest if statements within if statements. i.e., we can place

an if statement inside another if statement.

Flowchart of Python Nested if Statement

Flowchart of Python Nested if statement

Syntax:

 if(condition1):

 #Executeswhencondition1istrue

 if(condition2):

 #Executeswhencondition2istrue

 #ifBlockisendhere

if Block is end here

Example of Python Nested If Statement

In this example, we are showing nested if conditions in the code, All the If condition

in Python will be executed one by one.

Python

python program to illustrate nested If statement

i = 10

if (i == 10):

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

 # First if statement

 if (i < 15):

 print("i is smaller than 15")

 # Nested - if statement

 # Will only be executed if statement above

 # it is true

 if (i < 12):

 print("i is smaller than 12 too")

 else:

 print("i is greater than 15")

Output:

i is smaller than 15

i is smaller than 12 too

Python Elif

Here, a user can decide among multiple options. The if statements are executed

from the top down.

As soon as one of the conditions controlling the if is true, the statement associated

with that if is executed, and the rest of the ladder is bypassed. If none of the

conditions is true, then the final “else” statement will be executed.

Flowchart of Elif Statement in Python

Let’s look at the flow of control in if-elif-else ladder:

Flowchart of if-elif-else ladder

Syntax:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

if(condition):

 statement

elif(condition):

 statement

.

.

else:

 statement

Example of Python if-elif-else ladder

In the example, we are showing single if in Python, multiple elif conditions, and

single else condition.

Python

Python program to illustrate if-elif-else ladder

#!/usr/bin/python

i = 25

if (i == 10):

 print("i is 10")

elif (i == 15):

 print("i is 15")

elif (i == 20):

 print("i is 20")

else:

 print("i is not present")

Output:

i is not present

Ternary Statement | Short Hand If Else Statement

Whenever there is only a single statement to be executed inside the if block then

shorthand if can be used. The statement can be put on the same line as the if

statement.

Example of Python If shorthand

In the given example, we have a condition that if the number is less than 15, then

further code will be executed.

if condition: statement

Python

Python program to illustrate short hand if

i = 10

if i < 15: print("i is less than 15")

Output

i is less than 15

Example of Short Hand If Else Statements

This can be used to write the if-else statements in a single line where only one

statement is needed in both the if and else blocks.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Syntax: statement_when_True if condition else statement_when_False

In the given example, we are printing True if the number is 15, or else it will print

False.

Python

Python program to illustrate short hand if-else

i = 10

print(True) if i < 15 else print(False)

Output:

True

Similar Reads:

• Python3 – if , if..else, Nested if, if-elif statements

• Using Else Conditional Statement With For loop in Python

• How to use if, else & elif in Python Lambda Functions

Python If Else Statements – Conditional Statements

What is the conditional statement of if-else?

The if-else statement in Python is used to control the flow of the program based on

a condition. It has the following syntax:

if..condition:

 #Execute..this..block..if..conditions..True

else:

 # Execute this block if condition is False

For example:

x=10

if..x>5:

 print("x..is..greater..than..5")

else:

 print("x is not greater than 5")

How many else statements can a single if condition have in Python?

A single if condition can have at most one else statement. However, you can have

multiple elif (else if) statements to check additional conditions if needed:

x=10

if..x>15:

 print("x..is..greater..than..15")

elif..x>5:

 print("x..is..greater..than..5..but..not..greater..than..15")

else:

 print("x is 5 or less")

What are the different types of control statements in Python?

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python3-if-if-else-nested-if-if-elif-statements
https://www.geeksforgeeks.org/using-else-conditional-statement-with-for-loop-in-python
https://www.geeksforgeeks.org/how-to-use-if-else-elif-in-python-lambda-functions

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

In Python, control statements are used to alter the flow of execution based on

specific conditions or looping requirements. The main types of control statements

are:

• Conditional statements: if, else, elif

• Looping statements: for, while

• Control flow statements: break, continue, pass, return

What are the two types of control statements?

The two primary types of control statements in Python are:

• Conditional statements: Used to execute code based on certain conditions

(if, else, elif).

• Looping statements: Used to execute code repeatedly until a condition is met

(for, while).

Are control statements and conditional statements the same?

No, control statements and conditional statements are not exactly the same.

• Conditional statements (if, else, elif) specifically deal with checking

conditions and executing code based on whether those conditions

are True or False.

• Control statements encompass a broader category that includes both

conditional statements (if, else, elif) and looping statements (for, while), as

well as other statements (break, continue, pass, return) that control the flow of

execution in a program.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

•

In Python programming, Operators in general are used to perform operations on

values and variables. These are standard symbols used for logical and arithmetic

operations. In this article, we will look into different types of Python operators.

• OPERATORS: These are the special symbols. Eg- + , * , /, etc.

• OPERAND: It is the value on which the operator is applied.

Types of Operators in Python

1. Arithmetic Operators

2. Comparison Operators

3. Logical Operators

4. Bitwise Operators

5. Assignment Operators

6. Identity Operators and Membership Operators

Arithmetic Operators in Python

Python Arithmetic operators are used to perform basic mathematical operations

like addition, subtraction, multiplication, and division.

In Python 3.x the result of division is a floating-point while in Python 2.x division

of 2 integers was an integer. To obtain an integer result in Python 3.x floored (//

integer) is used.

Operator Description Syntax

+
Addition: adds two

operands
x + y

–
Subtraction: subtracts two

operands
x – y

*
Multiplication: multiplies

two operands
x * y

/
Division (float): divides

the first operand by the
x / y

Basic I/O operators

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-arithmetic-operators/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator Description Syntax

second

//

Division (floor): divides

the first operand by the

second

x // y

%

Modulus: returns the

remainder when the first

operand is divided by the

second

x % y

**
Power: Returns first raised

to power second
x ** y

Example of Arithmetic Operators in Python

Division Operators

In Python programming language Division Operators allow you to divide two

numbers and return a quotient, i.e., the first number or number at the left is divided

by the second number or number at the right and returns the quotient.

There are two types of division operators:

1. Float division

2. Floor division

Float division

The quotient returned by this operator is always a float number, no matter if two

numbers are integers. For example:

Example: The code performs division operations and prints the results. It

demonstrates that both integer and floating-point divisions return accurate results.

For example, ’10/2′ results in ‘5.0’, and ‘-10/2’ results in ‘-5.0’.

Python

print(5/5)

print(10/2)

print(-10/2)

print(20.0/2)

Output:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-programming-language/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

1.0

5.0

-5.0

10.0

Integer division(Floor division)

The quotient returned by this operator is dependent on the argument being passed.

If any of the numbers is float, it returns output in float. It is also known as Floor

division because, if any number is negative, then the output will be floored. For

example:

Example: The code demonstrates integer (floor) division operations using the // in

Python operators. It provides results as follows: ’10//3′ equals ‘3’, ‘-

5//2’ equals ‘-3’, ‘5.0//2′ equals ‘2.0’, and ‘-5.0//2’ equals ‘-3.0’. Integer division

returns the largest integer less than or equal to the division result.

Pythons

print(10//3)

print (-5//2)

print (5.0//2)

print (-5.0//2)

Output:

3

-3

2.0

-3.0

Precedence of Arithmetic Operators in Python

1. P – Parentheses

2. E – Exponentiation

3. M – Multiplication (Multiplication and division have the same precedence)

4. D – Division

5. A – Addition (Addition and subtraction have the same precedence)

6. S – Subtraction

The modulus of Python operators helps us extract the last digit/s of a number. For

example:

• x % 10 -> yields the last digit

• x % 100 -> yield last two digits

Arithmetic Operators With Addition, Subtraction, Multiplication, Modulo and

Power

Here is an example showing how different Arithmetic Operators in Python work:

Example: The code performs basic arithmetic operations with the values

of ‘a’ and ‘b’. It adds (‘+’), subtracts (‘-‘), multiplies (‘*’), computes the

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

remainder (‘%’), and raises a to the power of ‘b (**)’. The results of these

operations are printed.

Python

a = 9

b = 4

add = a + b

sub = a - b

mul = a * b

mod = a % b

p = a ** b

print(add)

print(sub)

print(mul)

print(mod)

print(p)

Output:

13

5

36

1

6561

Comparison of Python Operators

In Python Comparison of Relational operators compares the values. It either

returns True or False according to the condition.

Operator Description Syntax

>

Greater than: True if the

left operand is greater

than the right

x > y

<

Less than: True if the left

operand is less than the

right

x < y

== Equal to: True if both x == y

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-object-comparison-is-vs/
https://www.geeksforgeeks.org/relational-operators-in-python/
https://www.geeksforgeeks.org/relational-operators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator Description Syntax

operands are equal

!=
Not equal to – True if

operands are not equal
x != y

>=

Greater than or equal to

True if the left operand is

greater than or equal to

the right

x >= y

<=

Less than or equal to True

if the left operand is less

than or equal to the right

x <= y

= is an assignment operator and == comparison operator.

Precedence of Comparison Operators in Python

In Python, the comparison operators have lower precedence than the arithmetic

operators. All the operators within comparison operators have the same precedence

order.

Example of Comparison Operators in Python

Let’s see an example of Comparison Operators in Python.

Example: The code compares the values of ‘a’ and ‘b’ using various comparison

Python operators and prints the results. It checks if ‘a’ is greater than, less than,

equal to, not equal to, greater than, or equal to, and less than or equal to ‘b’.

Python

a = 13

b = 33

print(a > b)

print(a < b)

print(a == b)

print(a != b)

print(a >= b)

print(a <= b)

Output

False

True

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

False

True

False

True

Logical Operators in Python

Python Logical operators perform Logical AND, Logical OR, and Logical

NOT operations. It is used to combine conditional statements.

Operator Description Syntax

And
Logical AND: True if

both the operands are true
x and y

Or
Logical OR: True if either

of the operands is true
x or y

Not
Logical NOT: True if the

operand is false
not x

Precedence of Logical Operators in Python

The precedence of Logical Operators in Python is as follows:

1. Logical not

2. logical and

3. logical or

Example of Logical Operators in Python

The following code shows how to implement Logical Operators in Python:

Example: The code performs logical operations with Boolean values. It checks if

both ‘a’ and ‘b’ are true (‘and’), if at least one of them is true (‘or’), and negates

the value of ‘a’ using ‘not’. The results are printed accordingly.

Python

a = True

b = False

print(a and b)

print(a or b)

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print(not a)

Output

False

True

False

Bitwise Operators in Python

Python Bitwise operators act on bits and perform bit-by-bit operations. These are

used to operate on binary numbers.

Operator Description Syntax

& Bitwise AND x & y

| Bitwise OR x | y

~ Bitwise NOT ~x

^ Bitwise XOR x ^ y

>> Bitwise right shift x>>

<< Bitwise left shift x<<

Precedence of Bitwise Operators in Python

The precedence of Bitwise Operators in Python is as follows:

1. Bitwise NOT

2. Bitwise Shift

3. Bitwise AND

4. Bitwise XOR

5. Bitwise OR

Bitwise Operators in Python

Here is an example showing how Bitwise Operators in Python work:

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-bitwise-operators/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example: The code demonstrates various bitwise operations with the values

of ‘a’ and ‘b’. It performs bitwise AND (&), OR (|), NOT (~), XOR (^), right

shift (>>), and left shift (<<) operations and prints the results. These operations

manipulate the binary representations of the numbers.

Python

a = 10

b = 4

print(a & b)

print(a | b)

print(~a)

print(a ^ b)

print(a >> 2)

print(a << 2)

Output

0

14

-11

14

2

40

Bitwise AND Operator

The Python Bitwise AND (&) operator takes two equal-length bit patterns as

parameters. The two-bit integers are compared. If the bits in the compared positions

of the bit patterns are 1, then the resulting bit is 1. If not, it is 0.

Example: Take two bit values X and Y, where X = 7= (111)2 and Y = 4 = (100)2 .

Take Bitwise and of both X & y

Note: Here, (111)2 represent binary number.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

a = 10

b = 4

Print bitwise AND operation

print("a & b =", a & b)

Output

a & b = 0

Bitwise OR Operator

The Python Bitwise OR (|) Operator takes two equivalent length bit designs as

boundaries; if the two bits in the looked-at position are 0, the next bit is zero. If not,

it is 1.

Example: Take two bit values X and Y, where X = 7= (111)2 and Y = 4 = (100)2 .

Take Bitwise OR of both X, Y

Python

a = 10

b = 4

Print bitwise OR operation

print("a | b =", a | b)

Output

a | b = 14

Bitwise XOR Operator

The Python Bitwise XOR (^) Operator also known as the exclusive OR operator,

is used to perform the XOR operation on two operands. XOR stands for “exclusive

or”, and it returns true if and only if exactly one of the operands is true. In the

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

context of bitwise operations, it compares corresponding bits of two operands. If

the bits are different, it returns 1; otherwise, it returns 0.

Example: Take two bit values X and Y, where X = 7= (111)2 and Y = 4 = (100)2

. Take Bitwise and of both X & Y

Python

a = 10

b = 4

print bitwise XOR operation

print("a ^ b =", a ^ b)

Output

a ^ b = 14

Bitwise NOT Operator

The preceding three bitwise operators are binary operators, necessitating two

operands to function. However, unlike the others, this operator operates with only

one operand.

The Python Bitwise Not (~) Operator works with a single value and returns its

one’s complement. This means it toggles all bits in the value, transforming 0 bits

to 1 and 1 bits to 0, resulting in the one’s complement of the binary number.

Example: Take two bit values X and Y, where X = 5= (101)2 . Take Bitwise NOT

of X.

Python

a = 10

b = 4

Print bitwise NOT operation

print("~a =", ~a)

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Output

~a = -11

Bitwise Shift

These operators are used to shift the bits of a number left or right thereby

multiplying or dividing the number by two respectively. They can be used when

we have to multiply or divide a number by two.

Python Bitwise Right Shift

Shifts the bits of the number to the right and fills 0 on voids left(fills 1 in the case

of a negative number) as a result. Similar effect as of dividing the number with

some power of two.

Example 1:

a = 10 = 0000 1010 (Binary)

a >> 1 = 0000 0101 = 5 tricks a/2

Example 2:

a = -10 = 1111 0110 (Binary)

a >> 1 = 1111 1011 = -5

Python

a = 10

b = -10

print bitwise right shift operator

print("a >> 1 =", a >> 1)

print("b >> 1 =", b >> 1)

Output

a >> 1 = 5

b >> 1 = -5

Python Bitwise Left Shift

Shifts the bits of the number to the left and fills 0 on voids right as a result. Similar

effect as of multiplying the number with some power of two.

Example 1:

a = 5 = 0000 0101 (Binary)

a << 1 = 0000 1010 = 10 tricks a*2

a << 2 = 0001 0100 = 20

Example 2:

b = -10 = 1111 0110 (Binary)

b << 1 = 1110 1100 = -20

b << 2 = 1101 1000 = -40

Python

a = 5

b = -10

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

print bitwise left shift operator

print("a << 1 =", a << 1)

print("b << 1 =", b << 1)

Output:

a << 1 = 10

b << 1 = -20

Assignment Operators in Python

Python Assignment operators are used to assign values to the variables.

Operator Description Syntax

=

Assign the value of the

right side of the

expression to the left

side operand

x = y + z

+=

Add AND: Add right-

side operand with left-

side operand and then

assign to left operand

a+=b a=a+b

-=

Subtract AND: Subtract

right operand from left

operand and then assign

to left operand

a-=b a=a-b

*=

Multiply AND: Multiply

right operand with left

operand and then assign

to left operand

a*=b a=a*b

/=

Divide AND: Divide left

operand with right

operand and then assign

to left operand

a/=b a=a/b

%=
Modulus AND: Takes

modulus using left and
a%=b a=a%b

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/assignment-operators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator Description Syntax

right operands and

assign the result to left

operand

//=

Divide(floor) AND:

Divide left operand with

right operand and then

assign the value(floor) to

left operand

a//=b a=a//b

**=

Exponent AND:

Calculate exponent(raise

power) value using

operands and assign

value to left operand

a**=b a=a**b

&=

Performs Bitwise AND

on operands and assign

value to left operand

a&=b a=a&b

|=

Performs Bitwise OR on

operands and assign

value to left operand

a|=b a=a|b

^=

Performs Bitwise xOR

on operands and assign

value to left operand

a^=b a=a^b

>>=

Performs Bitwise right

shift on operands and

assign value to left

operand

a>>=b a=a>>b

<<=
Performs Bitwise left

shift on operands and
a <<= b a= a << b

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Operator Description Syntax

assign value to left

operand

Assignment Operators in Python

a = 10

b = a

print(b)

b += a

print(b)

b -= a

print(b)

b *= a

print(b)

b <<= a

print(b)

Output

10

20

10

100

102400

Identity Operators in Python

In Python, is and is not are the identity operators both are used to check if two

values are located on the same part of the memory. Two variables that are equal do

not imply that they are identical.

is..True..if..the..operands..are..identical

is..not..True..if..the..operands..are..not..identical

Example Identity Operators in Python

Let’s see an example of Identity Operators in Python.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-membership-identity-operators-not-not/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example: The code uses identity operators to compare variables in Python. It

checks if ‘a’ is not the same object as ‘b’ (which is true because they have different

values) and if ‘a’ is the same object as ‘c’ (which is true because ‘c’ was assigned

the value of ‘a’).

Python

a = 10

b = 20

c = a

print(a is not b)

print(a is c)

Output

True

True

Membership Operators in Python

In Python, in and not in are the membership operators that are used to test whether

a value or variable is in a sequence.

in True if value is found in the sequence

not in True if value is not found in the sequence

Examples of Membership Operators in Python

The following code shows how to implement Membership Operators in Python:

Example: The code checks for the presence of values ‘x’ and ‘y’ in the list. It

prints whether or not each value is present in the list. ‘x’ is not in the list, and ‘y’ is

present, as indicated by the printed messages. The code uses the ‘in’ and ‘not

in’ Python operators to perform these checks.

Python

x = 24

y = 20

list = [10, 20, 30, 40, 50]

if (x not in list):

 print("x is NOT present in given list")

else:

 print("x is present in given list")

if (y in list):

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-membership-identity-operators-not-not/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

 print("y is present in given list")

else:

 print("y is NOT present in given list")

Output

x is NOT present in given list

y is present in given list

Ternary Operator in Python

in Python, Ternary operators also known as conditional expressions are operators

that evaluate something based on a condition being true or false. It was added to

Python in version 2.5.

It simply allows testing a condition in a single line replacing the multiline if-else

making the code compact.

Syntax : [on_true] if [expression] else [on_false]

Examples of Ternary Operator in Python

The code assigns values to variables ‘a’ and ‘b’ (10 and 20, respectively). It then

uses a conditional assignment to determine the smaller of the two values and

assigns it to the variable ‘min’. Finally, it prints the value of ‘min’, which is 10 in

this case.

Python

a, b = 10, 20

min = a if a < b else b

print(min)

Output:

10

Precedence and Associativity of Operators in Python

In Python, Operator precedence and associativity determine the priorities of the

operator.

Operator Precedence in Python

This is used in an expression with more than one operator with different precedence

to determine which operation to perform first.

Let’s see an example of how Operator Precedence in Python works:

Example: The code first calculates and prints the value of the expression 10 + 20

* 30, which is 610. Then, it checks a condition based on the values of

the ‘name’ and ‘age’ variables. Since the name is “Alex” and the condition is

satisfied using the or operator, it prints “Hello! Welcome.”

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/ternary-operator-in-python/
https://www.geeksforgeeks.org/precedence-and-associativity-of-operators-in-python/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

expr = 10 + 20 * 30

print(expr)

name = "Alex"

age = 0

if name == "Alex" or name == "John" and age >= 2:

 print("Hello! Welcome.")

else:

 print("Good Bye!!")

Output

610

Hello! Welcome.

Operator Associativity in Python

If an expression contains two or more operators with the same precedence then

Operator Associativity is used to determine. It can either be Left to Right or from

Right to Left.

The following code shows how Operator Associativity in Python works:

Example: The code showcases various mathematical operations. It calculates and

prints the results of division and multiplication, addition and subtraction,

subtraction within parentheses, and exponentiation. The code illustrates different

mathematical calculations and their outcomes.

Python

print(100 / 10 * 10)

print(5 - 2 + 3)

print(5 - (2 + 3))

print(2 ** 3 ** 2)

Output

100.0

6

0

512

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Click to go in front page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

What is Python

Python’s simplicity, readability, and versatility make it an excellent choice for

beginners and experienced programmers alike. In this article, we’ve covered the

basics of Python, from setting up your environment to writing your first program

and understanding syntax, control flow, and functions. As you continue your

journey with Python Basics, don’t hesitate to explore its vast ecosystem of libraries,

frameworks, and tools to unleash its full potential in various domains of

programming.

Writing your first Python Program

Here we provided the latest Python 3 version compiler where you can edit and

compile your written code directly with just one click of the RUN Button. So test

yourself with Python’s first exercises.

Python

print("Hello World! I Don't Give a Bug")

Output

Hello World! I Don't Give a Bug

Comments in Python

Comments in Python are the lines in the code that are ignored by the interpreter

during the execution of the program. Also, Comments enhance the readability of the

code and help the programmers to understand the code very carefully.

Python

sample comment

This is Python Comment

name = "geeksforgeeks"

print(name)

Output

geeksforgeeks

Keywords in Python

Keywords in Python are reserved words that can not be used as a variable name,

function name, or any other identifier.

Fundamental Concepts

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/how-to-install-python-tensorflow-in-windows/
https://www.geeksforgeeks.org/python-comments/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Keywords

and False nonlocal

as finally not

assert for Or

break from pass

class global raise

continue if return

def import True

del is try

elif in while

else lambda with

except None yield

Python Variable

Python Variable is containers that store values. Python is not “statically typed”. An

Example of a Variable in Python is a representational name that serves as a pointer

to an object. Once an object is assigned to a variable, it can be referred to by that

name.

Rules for Python variables

• A Python variable name must start with a letter or the underscore character.

• A Python variable name cannot start with a number.

• A Python variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _).

• Variable in Python names are case-sensitive (name, Name, and NAME are

three different variables).

• The reserved words(keywords) in Python cannot be used to name the variable

in Python.

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://www.geeksforgeeks.org/python-nonlocal-keyword/
https://www.geeksforgeeks.org/python-as-keyword/
https://www.geeksforgeeks.org/finally-keyword-in-python/
https://www.geeksforgeeks.org/python-not-keyword/
https://www.geeksforgeeks.org/python-assert-keyword/
https://www.geeksforgeeks.org/python-for-loops/
https://www.geeksforgeeks.org/python-break-statement/
https://www.geeksforgeeks.org/python-pass-statement/
https://www.geeksforgeeks.org/python-classes-and-objects/
https://www.geeksforgeeks.org/global-keyword-in-python/
https://www.geeksforgeeks.org/python-raise-keyword/
https://www.geeksforgeeks.org/python-continue-statement/
https://www.geeksforgeeks.org/python-return-statement/
https://www.geeksforgeeks.org/python-def-keyword/
https://www.geeksforgeeks.org/import-module-python/
https://www.geeksforgeeks.org/python-del-to-delete-objects/
https://www.geeksforgeeks.org/is-keyword-in-python/
https://www.geeksforgeeks.org/python-try-except/
https://www.geeksforgeeks.org/python-in-keyword/
https://www.geeksforgeeks.org/python-while-loop/
https://www.geeksforgeeks.org/python-lambda/
https://www.geeksforgeeks.org/with-statement-in-python/
https://www.geeksforgeeks.org/python-try-except/
https://www.geeksforgeeks.org/python-none-keyword/
https://www.geeksforgeeks.org/python-yield-keyword/
https://www.geeksforgeeks.org/python-variables/

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Example

Python

An integer assignment

age = 45

A floating point

salary = 1456.8

A string

name = "John"

print(age)

print(salary)

print(name)

Output

45

1456.8

John

Python Data Types

Data types are the classification or categorization of data items. It represents the

kind of value that tells what operations can be performed on a particular data. Since

everything is an object in Python programming, data types are classes and variables

are instances (objects) of these classes.

Example: This code assigns variable ‘x’ different values of various data types in

Python.

Gautam

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

CLICK HERE TO JOIN OUR WHATSAPP GROUP

CLICK HERE TO JOIN OUR WHATSAPP GROUP

Python

x = "Hello World" # string

x = 50 # integer

x = 60.5 # float

x = 3j # complex

x = ["geeks", "for", "geeks"] # list

x = ("geeks", "for", "geeks") # tuple

x = {"name": "Gautam", "age":16} # dict

x = {"geeks", "for", "geeks"} # set

x = True # bool

Click to go in front page

https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS
https://chat.whatsapp.com/DU9vu7EedwxBQKlOkUJ3OS

	permanently store data in a non-volatile memory (e.g. hard disk).
	computer is turned off, we use files for future use of the data.

	File Handling
	Syntax
	Open a File on the Server
	Example

	Read Only Parts of the File
	Read Lines
	print(f.readline())
	print(f.readline()) print(f.readline())
	line:

	Close Files
	print(f.readline())

	Write to an Existing File
	Example

	Create a New File
	following parameters:

	Delete a File
	Check if File exist:
	you try to delete it:
	else:

	Delete Folder
	not specified, it reads and returns up to the end of the file.
	Exception: matlab ek error jo program chalate waqt hoti hai. Python mein, jab error aati hai to program crash nahi hota balki aap use handle kar sakte ho try aur except blocks ka use karke, taaki aap decide kar sako ki error hone par kya karna hai.
	Syntax Errors in Python
	Python Logical Errors (Exception)
	Characteristics of Logical Errors
	Example of a Logical Error
	Analysis
	Cause of Logical Error

	Common Builtin Exceptions
	Error Handling
	Handling Exceptions with Try/Except/Finally
	Raising exceptions for a predefined condition

	What is Module in Python?
	Examples of modules

	What is Package in Python?
	Examples of Packages:

	What is Library in Python
	Examples of Libraries:

	What is NumPy?
	Features of NumPy
	Install Python NumPy
	Arrays in NumPy
	NumPy Array Creation
	1. Create NumPy Array with List and Tuple
	2. Create Array of Fixed Size
	3. Create Using arange() Function
	5. Create Using linspace() Function
	6. Reshaping Array using Reshape Method
	7. Flatten Array

	NumPy Array Indexing
	NumPy Basic Operations
	1. Operations on a single NumPy array

	NumPy – Unary Operators
	NumPy – Binary Operators
	NymPy’s ufuncs
	Python Function Declaration
	Types of Functions in Python

	Creating a Function in Python
	Calling a Function in Python
	Python Function with Parameters

	Python Function Arguments
	Types of Python Function Arguments
	Default Arguments
	Keyword Arguments
	Positional Arguments
	Arbitrary Keyword Arguments
	Docstring

	Python Function within Functions
	Anonymous Functions in Python
	Recursive Functions in Python
	Return Statement in Python Function
	Pass by Reference and Pass by Value
	Quick Links

	FAQs- Python Functions
	What is function in Python?
	What are the 4 types of Functions in Python?
	How to Write a Function in Python?
	What are the parameters of a function in Python?
	What is Python main function?

	What is an Array in Python?
	Create an Array in Python
	Complexities for Creation of Arrays:

	Adding Elements to a Array
	Complexities for Adding elements to the Arrays

	Accessing Elements from the Array
	Complexities for accessing elements in the Arrays

	Removing Elements from the Array
	Complexities for Removing elements in the Arrays

	Slicing of an Array
	Searching Element in an Array
	Complexities for searching elements in the Arrays

	Updating Elements in a Array
	Complexities for updating elements in the Arrays
	Reversing Elements in a Array
	Complexities for reversing elements in the Arrays:
	Extend Element from Array
	What is extend element from array?

	Syntax of list extend()

	Python Dictionary Syntax
	What is a Dictionary in Python?
	How to Create a Dictionary

	Dictionary Example
	Different Ways to Create a Python Dictionary
	Complexities for Creating a Dictionary:

	Adding Elements to a Dictionary
	Complexities for Adding Elements in a Dictionary:

	Accessing Elements of a Dictionary
	Access a Value in Python Dictionary
	Complexities for Accessing elements in a Dictionary:

	Accessing an Element of a Nested Dictionary
	Deleting Elements using ‘del’ Keyword
	Dictionary Methods
	Creating a List
	Accessing Elements
	Slicing a List
	Modifying Elements
	Adding Elements
	Removing Elements
	List Comprehensions
	Common List Methods

	Difference Between List and Array in Python
	Python While Loop
	Python for Loop
	Syntax of Python for Loop

	Python Nested Loops
	Syntax of Python Nested for Loop
	Syntax of Python Nested while Loop

	Python Loop Control Statements
	Python Continue
	Python Break
	Python Pass

	Python If Statement
	Flowchart of If Statement
	Syntax of If Statement in Python
	Example of Python if Statement

	Python If Else Statement
	Flowchart of If Else Statement
	Syntax of If Else in Python
	Example of Python If Else Statement
	If Else in Python using List Comprehension

	Python Nested If Statement
	Flowchart of Python Nested if Statement
	Example of Python Nested If Statement

	Python Elif
	Flowchart of Elif Statement in Python
	Example of Python if-elif-else ladder

	Ternary Statement | Short Hand If Else Statement
	Example of Python If shorthand
	Example of Short Hand If Else Statements

	Python If Else Statements – Conditional Statements
	What is the conditional statement of if-else?
	How many else statements can a single if condition have in Python?
	What are the different types of control statements in Python?
	What are the two types of control statements?
	Are control statements and conditional statements the same?

	Types of Operators in Python
	Arithmetic Operators in Python
	Example of Arithmetic Operators in Python
	Division Operators
	Float division
	Integer division(Floor division)

	Precedence of Arithmetic Operators in Python
	Arithmetic Operators With Addition, Subtraction, Multiplication, Modulo and Power

	Comparison of Python Operators
	Precedence of Comparison Operators in Python
	Example of Comparison Operators in Python

	Logical Operators in Python
	Precedence of Logical Operators in Python
	Example of Logical Operators in Python

	Bitwise Operators in Python
	Precedence of Bitwise Operators in Python
	Bitwise Operators in Python

	Bitwise AND Operator
	Bitwise OR Operator
	Bitwise XOR Operator
	Bitwise NOT Operator
	Bitwise Shift
	Python Bitwise Right Shift
	Python Bitwise Left Shift
	Assignment Operators in Python
	Assignment Operators in Python

	Identity Operators in Python
	Example Identity Operators in Python

	Membership Operators in Python
	Examples of Membership Operators in Python

	Ternary Operator in Python
	Examples of Ternary Operator in Python

	Precedence and Associativity of Operators in Python
	Operator Precedence in Python
	Operator Associativity in Python

	What is Python
	Writing your first Python Program
	Comments in Python
	Keywords in Python
	Python Variable
	Rules for Python variables

	Python Data Types

