

DRONE TECHNOLOGY & ROBOTICS

DIPLOMA WALLAH

OPEN ELECTIVE

Jharkhand University Of Technology (JUT)

UNIT-IV- Design of UAV Drone Systems

◆ 1. Introduction to Design and Selection of the System

Explanation

Designing a UAV begins with **mission requirements**: what payload it will carry, how far it must fly (range), how long it must remain airborne (endurance), the environment it will operate in (urban, remote, altitude, weather), and any regulatory or safety constraints. Based on this, the designer selects the system configuration including air-frame (fixed-wing, multirotor, hybrid VTOL), propulsion (electric, fuel, hybrid), sensors/payload (camera, LiDAR, thermal), communications and ground control station. The **system selection** phase includes trade-off analyses: payload vs weight, cost vs complexity, endurance vs size, performance vs reliability. Following selection, **preliminary design** involves sizing components (wing span, motor power, battery capacity) and then **detailed design** integrates structure, avionics, control system, manufacturing and testing. A poor selection in early design results in under-performing or unstable UAVs. Designers must consider modularity (easier upgrades/maintenance), lifecycle (manufacture, maintain, retire), and future adaptability.

Key Points

- Define mission & requirements (payload, range, altitude, environment).
- Choose configuration: air-frame type + propulsion + payload + sensors.
- Trade-off analysis: weight vs endurance, cost vs capability, size vs manoeuvrability.
- Preliminary sizing: wing loading, power-to-weight ratio, endurance estimation.

- Detailed design: systems integration, structural design, manufacturability, testing.
- Selection must respect regulations (airspace, categories) and operational constraints.

Real-Life Example

A UAV is designed for precision agriculture: needs to carry a multispectral camera (1 kg), fly for 2 hours over fields (20 km range), operate at low altitude with VTOL take-off from farm. The designer selects a hybrid VTOL fixed-wing configuration (takes off vertically, then efficient forward flight), chooses lightweight composite airframe, electric propulsion, autopilot + GPS + camera payload, and ensures battery capacity matches flight time while meeting weight constraint.

Summary (Hinglish)

Drone banaane ka pehla kadam hai mission ko samajhna – kitna weight, kis distance, kis altitude, kaunsa environment. Phir configuration select karo – wing ya rotor, motor ya battery, sensors kya hongi – aur weight-cost-performance sab ka balance karo. Ache design ke liye selection bahut important hai.

◆ 2. Aerodynamics and Air-Frame Configurations

Explanation

The aerodynamics and air-frame configuration determine how the UAV flies, how efficient it is, and how stable and controllable it will be. Key aerodynamic parameters include lift, drag (including induced drag and parasitic drag), thrust, weight, coefficient of lift (C_L), and coefficient of drag (C_D). The air-frame configuration might be multirotor (quad-, hexa-, octo-copters) which excel in hover and manoeuvrability, fixed-wing which excel in forward flight efficiency and endurance, single-rotor helicopters, and hybrid VTOL (vertical take-off then forward flight) which combine best of both but at added complexity. Wing loading, aspect ratio, air-foil selection, structural layout are fundamental. For multirotors, rotor-wake interaction, downwash, prop-rotor interference and stability issues matter. Advanced analysis uses

CFD (Computational Fluid Dynamics) and structural simulation to optimise shape, material, and configuration.

Key Points

- Fixed-wing: efficient forward flight, longer range, but needs runway or launch.
- Multirotor: VTOL, hover, easier control, but lower efficiency and endurance.
- Hybrid VTOL: combines vertical take-off with forward flight efficiency, more complex.
- Selection of wing/air-foil, aspect ratio, wing loading impacts lift/drag performance.
- Structural design must support aerodynamic loads, minimise weight, maintain stiffness.
- Material choice influences both aerodynamics (surface finish, drag) and structure (strength, weight).

Real-Life Example

A fixed-wing UAV designed for mapping might use a high aspect-ratio wing (long span, narrow chord) to reduce induced drag, use composite materials for lightweight yet strong structure, and select an air-foil optimized for low-speed cruise. Designers run CFD simulations to reduce drag and maximise lift-to-drag ratio, thereby increasing endurance.

Summary (Hinglish)

Aerodynamics aur air-frame ka matlab hai: drone ka shape, wing, motor sab milke decide karte hain uska "kaise aur kitna acha" fly karega. Fixed-wing zyada efficient hai long flight ke liye; rotor-based acchi manoeuvrability dete hain. Configuration aur material ka chunav bahut maaine rakhta hai.

◆ 3. Characteristics of Aircraft Types

Explanation

Aircraft types for UAVs vary widely by size, weight, range, endurance, altitude, take-off method, and application. Categories can include micro/nano UAVs (very small, indoor or short-range tasks); small UAVs (for commercial/industrial use); tactical/medium-range UAVs; and MALE/HALE (Medium Altitude Long Endurance / High Altitude Long Endurance) UAVs typically used in surveillance, communication relays or military missions. Each type has distinct characteristics: payload capacity, service ceiling, endurance, speed, take-off/landing requirement, autonomy level, regulatory classification. Designers must align mission demands with the correct aircraft type. Bigger UAVs bring bigger challenges in structure, certification, cost, logistics, and material complexity.

Key Points

- UAV types by size/weight: nano, micro, small, medium, large.
- UAV types by endurance/range/altitude: short-range, tactical, MALE, HALE.
- Characteristics include: payload capacity, service ceiling, endurance, take-off/landing method (VTOL/runway).
- Choice of type impacts design complexity, cost, certification/regulatory burden.
- Scaling effects: as size increases, structural weight, power system, aerodynamic complexity and costs increase significantly.

Real-Life Example

An MALE UAV used for surveillance may fly at 30,000 ft, carry 200 kg payload (cameras, sensors), remain airborne for 24+ hours and cover hundreds of kilometers. On the other side a nano-UAV for indoor building inspection may weigh less than 2 kg, hover for 30 minutes and operate in tight spaces.

Summary (Hinglish)

Drone ka size aur type mission ke hisaab se decide hota hai. Chhota drone (nano) indoor ya building inspection ke liye; bada (HALE) drone strategic long-range mission ke liye. Endurance, payload aur altitude - ye sab type define karte hain.

◆ 4. Design Standards and Regulatory Aspects – India Specific

Explanation

In India, UAV design and operation must comply with regulatory frameworks and standards set by the Directorate General of Civil Aviation (DGCA) and other authorities. The “Unmanned Aircraft Systems Rules, 2021” govern aspects such as weight categories (nano, micro, small, medium, large), registration, remote pilot licence, airspace zones (Green/Yellow/Red), operations beyond visual line of sight (BVLOS), remote identification, operational logs. From a design perspective, designers must ensure air-frame meets airworthiness criteria, structural strength, electromagnetic compatibility, telecommunication link security, fail-safe systems (return-home, redundancy), certification of propulsor and components, materials standards, environmental safety (battery handling), and adherence to Indian “Make in India” policy. For stealth/military UAVs, additional military airworthiness and export/import controls apply.

Key Points

- Regulatory bodies: DGCA and military airworthiness (for defence UAVs).
- Weight and size categories determine registration/licensing requirements.
- Operational zones define where UAVs can fly (Green/Yellow/Red).
- Design must comply with structural safety, fail-safe controls, telemetry reliability, link redundancy, EMI/EMC regulations.
- BVLOS operations require special permissions; certification and documentation must accompany design.

Real-Life Example

A commercial mapping UAV designed for Indian operations must register with DGCA, pilot must have remote pilot licence, the aircraft must comply with weight limit (say ≤ 25 kg for small category), have

geo-fencing software, return-home feature, and must log flight data. The manufacturer must document structural design, material certifications, software security and so on.

Summary (Hinglish)

India me drone design aur operation ke liye bahut saare **rules aur standards** hain. DGCA ne weight category, registration, pilot licence, safe link aur fail-safe controls sab define kiye hain. Agar design or operation unke hisaab se nahi hua toh legal problem ho sakti hai.

◆ 5. Design for Stealth

Explanation

For UAVs intended for covert, military or surveillance missions, **stealth design** is crucial. Stealth involves minimising detectability in radar (Radar Cross Section – RCS), infrared (thermal signature), acoustic (noise), and visual spectrum. Designers therefore choose flying-wing or blended-wing-body configurations (which reduce radar reflections), apply radar-absorbing or radar-transparent materials/coatings, integrate sensors and weapons internally (to avoid external stores which increase signature), optimise engine intake/exhaust for reduced IR, use electric or low-noise propulsion for reduced acoustic signature, and use camouflage/adaptive surfaces to reduce visually detectability. These design choices introduce trade-offs: higher cost, greater complexity, stricter manufacturing tolerances, maintenance challenges, and sometimes reduced payload or simpler aerodynamics.

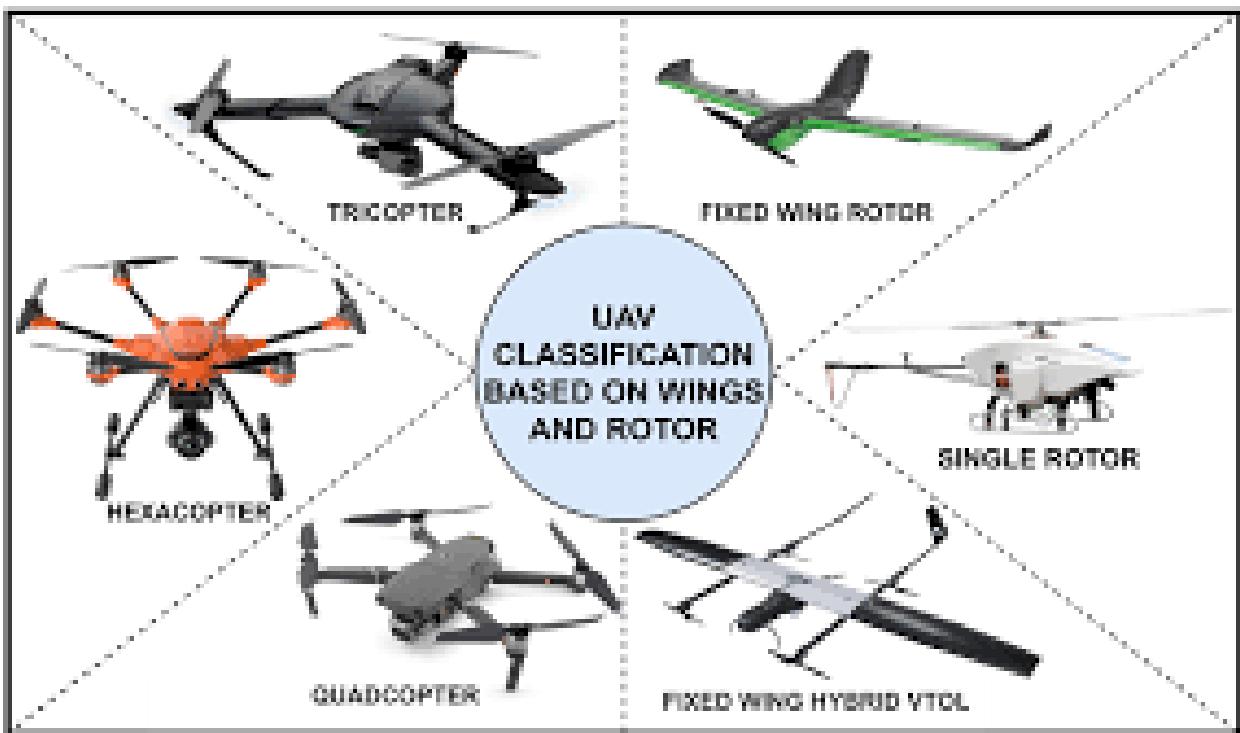
Key Points

- Stealth = low signature in radar, thermal, acoustic, visual domains.
- Shape matters: flying-wing, smooth surfaces, no protrusions, internal payload bays.
- Materials: radar-absorbing composites, coatings, low emissivity materials, acoustic dampening.
- Propulsion & exhaust design: electric motors for quiet operation, masked exhaust for thermal reduction, ducting.

- Trade-offs: stealth often increases cost, complexity, reduces modularity or payload.

Real-Life Example

A military reconnaissance UAV uses a flying-wing air-frame, all sensors internally mounted, uses composite radar-absorbent material, electric propulsion for operations near hostile zone, with minimal external features. Its design prioritises minimal detectability over maximum payload weight or cost.


Summary (Hinglish)

Stealth design ka matlab hai drone ko "nazuk-nazar" banana – radar, sound, heat sabme kam detect hona. Air-frame shape, material, motor-exhaust, internal storage sab uske hisaab se design hote hain. Ye zyada chalti hai military ya covert missions me.

⌚ Final Summary of UNIT IV

- Mission definition and system selection set the foundation for UAV design – choose configuration, propulsion, sensors based on requirements.
- Aerodynamics and air-frame configuration determine flight efficiency, range, stability and suitability for task.
- UAV types (by size, endurance, altitude) have distinct characteristics; selecting the right type is critical.
- In India, design and operation must comply with regulatory standards (DGCA, weight categories, pilot licence, zones) and design standards (structural safety, fail-safe controls).
- For special missions, stealth design adds another layer of complexity – minimising signatures while maintaining flight performance.

Diploma Wallah

Made with ❤ by Sangam