To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

BLOCK CHAIN TECHNOLOGY
DIPLOMA WALLAH
OPEN ELECTIVE
Jharkhand University Of Technology (JUT)

UNIT - III: HYPERLEDGER FABRIC ARCHITECTURE AND DEVELOPMENT
Decomposing the Consensus Process

Consensus in blockchain systems can be decomposed into distinct phases and
components to better understand how distributed nodes reach agreement. Unlike
monolithic consensus mechanisms (like PoW), modern enterprise blockchains
separate consensus into multiple specialized stages.geeksforgeeks+2

General Consensus Process Decomposition
Phase 1: Transaction Proposal

A participant (node) or leader proposes a new ’tram‘gction or block that must comply

with the network's protocol rules.geeksforg%%+l

Phase 2: Transaction Broadcast ﬂ&

The proposed transaction or block ?B}Q\a}dcast to other nodes in the network for

validation.geeksforgeeks+1 ;\(\ %
Q -
Phase 3: Validation \~\ 7

Nodes verify the transaction or block based on predefined rules, checking
signatures, permissions, and business logic.geeksforgeeks+1

Phase 4: Consensus Voting

Nodes communicate with each other to reach agreement on the proposed transaction
or block. The specific voting method varies by consensus mechanism.persistent+2

Phase 5: Agreement and Finalization

Once a sufficient number of nodes agree on the proposed transaction or block, it is
added to the blockchain.geeksforeeeks+1

Phase 6: Propagation

The updated ledger, now including the new block, is propagated to all nodes in the
network to ensure they all have the same view of the blockchain.geeksforgeeks+1

Components of Consensus Mechanisms

(({)ebsite:— PDiplomawallah.in

https://diplomawallah.in/
https://www.geeksforgeeks.org/computer-networks/cryptographic-consensus-mechanisms-in-blockchain/
https://www.geeksforgeeks.org/compiler-design/consensus-algorithms-in-blockchain/
https://www.geeksforgeeks.org/computer-networks/cryptographic-consensus-mechanisms-in-blockchain/
https://www.geeksforgeeks.org/compiler-design/consensus-algorithms-in-blockchain/
https://www.persistent.com/wp-content/uploads/2017/04/WP-Understanding-Blockchain-Consensus-Models.pdf
https://www.geeksforgeeks.org/computer-networks/cryptographic-consensus-mechanisms-in-blockchain/
https://www.geeksforgeeks.org/compiler-design/consensus-algorithms-in-blockchain/

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

Consensus protocols can be decomposed into several distinct components, each
responsible for a specific aspect:venom

1. Election Component

o Purpose: Select a leader or set of validators responsible for proposing
blocks.geeksforgeeks+1

e Methods:
o Round-robin rotation
o Stake-based selection

o Random selection with cryptographic guarantees

o Voting-based electiongeeksforgeeks+1

Example: In Raft, nodes elect a leader through randomized timeouts and majority
voting. In Kafka-based ordering, leaders are elected through ZooKeeper

2. Proposal and Acceptance Component \Q'
o Purpose: Leader proposes a value or b&her nodes evaluate and accept
or reject.venom+1 &
o Process: (‘b

o Leader constructs a sal containing transactions

coordination.geeksforgeeks

o Proposal broa validator nodes

o Validato } oposal validity

o Validators signal acceptance or rejectiongeeksforgeeks
3. Agreement Component
o Purpose: Reach majority consensus on the proposed value.venom+1
o Threshold: Different mechanisms require different agreement thresholds:
o Simple majority (>50%)

o Supermajority (>66.6% for Byzantine Fault Tolerance)

o Unanimous agreement (some permissioned systems)geeksforgeeks
4. Commitment Component

o Purpose: Finalize the agreed-upon decision and commit to the
ledger.venom+1

(({)ebsite:— PDiplomawallah.in

https://diplomawallah.in/
https://docs.venom.foundation/learn/consensus/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://docs.venom.foundation/learn/consensus/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://docs.venom.foundation/learn/consensus/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://docs.venom.foundation/learn/consensus/

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

e Action: Once consensus is reached, all nodes commit the agreed-upon values
to their local copies of the blockchain or database.geeksforgeeks

Execute-Order-Validate vs. Order-Execute
Traditional Order-Execute Model (Bitcoin, Ethereum):

1. Order: Transactions are ordered into blocks by miners/validators

2. Execute: All nodes execute all transactions sequentially

3. Validate: Nodes validate execution results and update state
Limitations:

o Sequential execution limits throughput

o All nodes must execute all transactions

e Non-deterministic smart contracts can cause forks

o Limited privacy (all nodes see all data)educati¥eAl
Hyperledger Fabric's Execute-Order-ValidatekMod\el:

(W
1. Execute (Endorsement): Selected peers sim%flate transactions in parallel

before ordering N

2. Order: Ordering service sequen@?zndorsed transactions into blocks

3. Validate: All peers Vahdat(e“@.(n&orsements and apply state changes
Advantages: \

o Parallel transactien exet\ﬁtlon

o Privacy through selective endorsement

e Deterministic validation

o Better scalabilitygeeksforgeeks+1

This decomposition enables Hyperledger Fabric to achieve higher performance and
flexibility compared to traditional blockchain architectures.

Hyperledger Fabric Components

Hyperledger Fabric is a modular, permissioned blockchain platform designed for
enterprise use. Its architecture consists of several specialized components working
together to provide a secure, scalable distributed ledger system.ibm+3

1. Peer Nodes

(({)ebsite:— PDiplomawallah.in

https://diplomawallah.in/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://www.educative.io/answers/how-do-transactions-work-in-hyperledger-fabric
https://www.geeksforgeeks.org/computer-networks/transaction-flow-in-hyperledger-fabric/
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

Definition: Peers are fundamental nodes in the Fabric network that host copies of

ledgers and smart contracts (chaincode).softwaremill+3
Key functions:
e Maintain blockchain ledgers and world state databases
o Execute and host chaincode (smart contracts)
» Validate transactions
o Commit blocks to the ledger

o Communicate with other peers via gossip protocolhyperledger-
fabric.readthedocs+2

Peer characteristics:

o A peer belongs to one organization but can participate in multiple
channelssoftwaremill+1

o Each peer can host multiple ledgers (one per ch@l) and multiple
chaincodeshyperledger-fabric.readthedocs °

Mg
o Typically, organizations run multiple(%l\ih‘;bor redundancy and load

handlingspydra+1 $
Types of peers:

QO
a) Endorsing Peers @
)

e Execute chaincode to \&ate transactions
« Generate transao osals with read-write sets

» Sign endorsement responses

o Must satisty endorsement policies for transactions to be valideducative+2
b) Committing Peers

o All peers are committing peers

o Receive blocks from orderers

» Validate transactions against endorsement policies

o Commit valid transactions to the ledger

o Update world state databasegeeksforgeeks+1

¢) Anchor Peers
o Designated peers that other organizations can discover

» Facilitate cross-organization communication

((Jebsite:— Piplomawallah.in

https://diplomawallah.in/
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://www.spydra.app/blog/architecture-of-hyperledger-fabric-an-in-depth-guide
https://www.educative.io/answers/how-do-transactions-work-in-hyperledger-fabric
https://www.geeksforgeeks.org/computer-networks/transaction-flow-in-hyperledger-fabric/

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

e One per organization per channelsoftwaremill+1

d) Leader Peers

o Responsible for distributing transactions from orderers to other peers in the
organization

o Elected dynamically or statically configuredhyperledger-fabric.readthedocs+1

Peer architecture components:

o Ledger: Stores blockchain (transaction log) and world state (current key-value
pairs)

o Chaincode containers: Separate Docker containers running chaincode logic
o Gossip protocol: Peer-to-peer communication for data dissemination

o State database: LevelDB (default, embedded) or CouchDB (optional,
external)stackoverflow+2

2. Orderer Nodes (Ordering Service)

Definition: Orderers are specialized nodes responsiblé for ordering transactions and
creating blocks, but they do not execute transagtieris or maintain

ledgers.geeksforgeeks+3 4 B
| | Q]
Primary functions:) f’\ \
N\
. . AN\
a) Transaction Ordering e .’}

» Receive endorsed trangactions from clients

o Order transactiohs chrd\rh)logically across the network
N

o DPackage ordered transactions into blocks

» Distribute blocks to all committing peersibm+2

Critical distinction: If transactions were ordered at peers themselves, it would
increase the possibility of state forks where different peers have different transaction
orders.ibm

b) Maintaining Orderer System Channel

o Stores the consortium definition (list of organizations permitted to create
channels)

e Maintains network-level configurationibm
c) Identity Validation
» Validates organization membership against consortium

o Enforces channel permissions

(({)ebsite:— PDiplomawallah.in

https://diplomawallah.in/
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://stackoverflow.com/questions/47505084/difference-between-chain-and-state-database-in-hyperledger-fabric/47508562
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

» Validates transaction channel configurationsibm
d) Channel Management

o Creates new channels

e Manages channel membership

o Enforces channel policiesgeeksforgeeks+1

Types of ordering services:
1. Solo Orderer
» Single orderer node
e No fault tolerance

o Use case: Development and testing onlygeeksforgeeks

2. Kafka Orderer (Deprecated)
o Cluster of orderers using Apache Kafka for con@s

o Crash fault tolerant (CFT) @

o Use case: Production networks (older%g ons)geeksforgeeks

3. Raft Orderer (Current Recommende

o Cluster of orderers using R ensus algorithm

o Crash fault tolerant (CF\&Q
o Simpler than Ka@' ternal dependencies
o Use case: Production networks (Fabric 1.4.1+)geeksforgeeks+1

4. BFT Orderer (Future)

o Byzantine Fault Tolerant ordering
¢ Can tolerate malicious orderers

e Under developmentgeeksforgeeks

Orderer characteristics:
e Does not process smart contracts or execute transactionslinkedin+1
e Does not maintain ledgers (only orders and distributes)ibm
e Modular design allows pluggable consensus implementationslinkedin
o Can be shared across multiple channelsibm

3. Chaincode (Smart Contracts)

((Jebsite:— Piplomawallah.in

https://diplomawallah.in/
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.linkedin.com/pulse/hyperledger-fabric-architecture-components-flow-chandrasekaran
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.linkedin.com/pulse/hyperledger-fabric-architecture-components-flow-chandrasekaran
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

Definition: Chaincode is Hyperledger Fabric's term for smart contracts —
programmable business logic that defines assets and transaction
rules.aws.amazon+2

Supported languages:
* Go (Golang): Most mature and performant
o Node.js (JavaScript/TypeScript): Good developer experience

o Java: Enterprise-friendly optionaws.amazon+3

Chaincode lifecycle (Fabric 2.x):
1. Package: Bundle chaincode source code into deployable package
2. Install: Install chaincode package on endorsing peers
3. Approve: Organizations approve chaincode definition
4

. Commit: Commit chaincode definition to charme@ce sufficient approvals

received \

5. Invoke: Execute chaincode functions V@tionshyperledger—

fabric.readthedocs+1 \
Chaincode structure: &

Basic components:

o Init function: Initializesc ﬁe state (optional in Fabric 2.x)
o Invoke functions: Bv&s logic functions for querying and updating state
o Shim library: Prowides APIs to interact with Fabric peersgithub+2
Example (Node.js):
javascript

const shim = require('fabric-shim');

class MyChaincode {
async Init(stub) {
// Initialization logic

return shim.success();

(({)ebsite:— PDiplomawallah.in

https://diplomawallah.in/
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/java-chaincode.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://github.com/hyperledger/fabric-chaincode-java

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

async Invoke(stub) {
let ret = stub.getFunctionAndParameters();
let method = this|[ret.fcn];

return method(stub, ret.params);

async createAsset(stub, args) {
// Business logic to create asset
await stub.putState(key, value);

return shim.success();

async queryAsset(stub, args) { @
// Business logic to query asset &

let value = await stub.getState(key()ﬁ

return shim.success(value);
SRS
shim.start(new MyChaincode());

Chaincode execution model:

o Chaincode runs in separate Docker containers, isolated from peer
processeshyperledger.github+1

» Executes in response to transaction proposals
o Reads from and writes to world state via CouchDB or LevelDB

o Cannot directly access external systems (must use oracles)aws.amazon+1

Chaincode APIs:
o putState(key, value): Write key-value pair to world state

o getState(key): Read value for key from world state

(C@"ebg)ite:— Piplomawallah.in

https://diplomawallah.in/
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

delState(key): Delete key from world state
» getStateByRange(startKey, endKey): Range query
o getQueryResult(query): Rich query (CouchDB only)

o getHistoryForKey(key): Query all historical values for a
keyhyperledger.github+2

4. Membership Service Provider (MSP)

Definition: MSP is the component that defines the rules by which identities are
validated, authenticated, and given access to participate in a Hyperledger Fabric
network.astconsulting+3

Primary functions:

a) Identity Management
e Defines which Certificate Authorities (CAs) are trusted
o Establishes organizational membership

e Maps certificates to roles and permissionsd%\NQ

4
b) Authentication N

A

o Verifies participant identities usi 509 certificates

~
o Ensures only authorized ent"yfieé)éan submit transactionsastconsulting+1

¢) Authorization ;)\S: b
« Enforces access contro\l}g)licies
o Determines what adtions each identity can performdev+1
MSP structure:
Root Certificates:
e Root CA certificate: Establishes root of trust for organization
o TLS CA certificate: For secure peer-to-peer communicationibm+1
Intermediate Certificates (Optional):

e Intermediate CA certificates: Chain of trust between root and leaf
certificatesibm

Admin Certificates:
o Identify administrators with elevated privileges

o Required for network operations (creating channels, installing
chaincode)astconsulting+1

(({)ebsite:— PDiplomawallah.in

https://diplomawallah.in/
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric

To Join Diploma Wallah Group contact :- 9508550281

DIPLOMA WALLAH 5t Semester

Node Certificates:

o Each peer, orderer, and client has unique identity certificate

e Organizational Unit (OU) attributes distinguish node typesibm
Revocation Lists (Optional):

o List of revoked certificates that should no longer be trustedhyperledger-
fabric.readthedocs+1

Types of MSPs:

1. Local MSP
o Defined for each node (peer, orderer) and client
» Contains node's own identity certificates

e Controls what the node can dostackoverflow+2

2. Channel MSP ° &

o Defined at channel level \Q°
o Lists all organizations participating in@nnel
o Specifies which identities are mem t each organization

» Enforced by all channel mer@%‘aekoverﬂow+2

MSP configuration: \Q
Each MSP includes: ° &
o MBSP identifier (u e name)
o Root CA certificates (trust anchors)
e Admin certificates
e Organizational Units (optional)

o Certificate revocation lists (optional)hyperledger-fabric.readthedocs+1

Certificate Authority (CA) relationship:
MSPs work with CAs to manage the identity lifecycle:
1. CA enrolls participants and issues certificates
2. MSP validates certificates against trusted CA roots
3. MSP authorizes actions based on certificate attributesdev+2

Example: A university blockchain network might have:

10

(({)ebsite:— PDiplomawallah.in

https://diplomawallah.in/
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://stackoverflow.com/questions/52357596/hyperledger-fabric-docs-on-membership-service-provider-questions
https://stackoverflow.com/questions/52357596/hyperledger-fabric-docs-on-membership-service-provider-questions
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30

DIPLOMA WALLAH 5t Semester

e University MSP: Defines university administrators and professors (can create
credentials)

o Student MSP: Defines students (can only read credentials)dev
5. Channels

Definition: Channels are private communication pathways that allow subsets of
network participants to conduct confidential transactions.hyperledger-
fabric.readthedocs+3

Key characteristics:
a) Data Isolation

o Each channel has a completely separate ledgerhyperledger-
fabric.readthedocs+1

e Transactions on one channel are invisible to other
channelshyperledgendary.github+1

o Organizations can participate in multiple c@’

simultaneouslysoftwaremill+1 \(b‘
b) Privacy %
e Only channel members can acceéﬁnnel data

« Different endorsement policj 1 channel

o Enables competing organizations to use same network without sharing
sensitive datahyperledgehdary.eithub

Channel components:

o Channel configuration: Defines members, policies, and parameters

o Channel ledger: Independent blockchain and world state

o Channel MSPs: Identity definitions for channel members

o Chaincode: Can be instantiated on multiple channels independentlyspydra+2
Use cases:

o Industry consortiums with competing members

o Supply chains with confidential pricing

» Financial networks with regulatory partitionshyperledgendary.github

6. Ledger

11

https://diplomawallah.in/
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledgendary.github.io/unstable-fabric-docs/fabric_model.html
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledgendary.github.io/unstable-fabric-docs/fabric_model.html
https://www.spydra.app/blog/architecture-of-hyperledger-fabric-an-in-depth-guide
https://hyperledgendary.github.io/unstable-fabric-docs/fabric_model.html

DIPLOMA WALLAH 5t Semester

Definition: The ledger in Hyperledger Fabric consists of two components: the
blockchain (transaction log) and the world state (current state
database).hyperledger-fabric.readthedocs+3

Component 1: Blockchain (Transaction Log)

Structure:
o Immutable, sequenced record of all transactions
o Stored as a file-based ledger with serialized blocks
o Each block contains one or more transactions

o Blocks linked cryptographically via hasheshyperledger-fabric.readthedocs+2

Block structure:

o Block header: Block number, current block hash, previous block hash,
transaction count

o Block data: Array of transactions with read- wrlﬁ\

o Block metadata: Signatures, endorsem g@datlon codeshyperledger-
fabric.readthedocs+1

Characteristics: &

e Append-only (cannot modif@ ete past transactions)
o Definitive source of tr Q

e Can be used to rebui rld state if neededstackoverflow+1

Component 2: World State (State Database)
Purpose:
o Holds current values for all keys ever included in the blockchaingithub+3

o Provides fast access to latest state without traversing entire
blockchainhyperledger-fabric.readthedocs+1

o Automatically regenerated from blockchain if neededstackoverflow+1

State database options:
a) Level DB (Default)
o Embedded key-value database
o Runs within peer process
o Supports key-based lookups and range queries

o Stores data as simple key-value pairsgithub+2

12

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger.html
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger.html
https://stackoverflow.com/questions/47505084/difference-between-chain-and-state-database-in-hyperledger-fabric/47508562
https://github.com/hyperledger/fabric-docs-i18n/blob/release-2.5/docs/locale/fr_FR/source/ledger.rst
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://stackoverflow.com/questions/47505084/difference-between-chain-and-state-database-in-hyperledger-fabric/47508562
https://github.com/hyperledger/fabric-docs-i18n/blob/release-2.5/docs/locale/fr_FR/source/ledger.rst

DIPLOMA WALLAH 5t Semester

b) CouchDB (Optional)

e External NoSQL document database

e Stores data as JSON documents

o Supports rich queries using Mango query language

o Enables complex queries on chaincode data structure

o Better for applications requiring sophisticated queriesgithub+2
World state operations:

o Create: Add new key-value pair

o Update: Modify existing key's value

o Delete: Remove key-value pair

e Query: Retrieve current value(s)hyperledger-fabric.readthedocs+1

Ledger per channel:) Q

o Each channel has its own independen@

o Peers maintain separate ledgers for eq% annel they join

o Prevents data leakage between c Ishyperledger-fabric.readthedocs+2

Ledger features: @
e Query using key—based\@ps

» Range queries \

o Composite key queties

» Rich queries (CouchDB only)

o Full history retrieval for any keyhyperledger-fabric.readthedocs+1

7. Certificate Authority (CA)

Definition: The CA issues and manages digital certificates for network
participants.astconsulting+2

Functions:
o Enrollment: Issue identity certificates to new members
o Re-enrollment: Refresh certificates before expiration
e Revocation: Invalidate compromised certificates

o Attribute management: Assign roles and attributes to
identitiesastconsulting+1

13

https://diplomawallah.in/
https://github.com/hyperledger/fabric-docs-i18n/blob/release-2.5/docs/locale/fr_FR/source/ledger.rst
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric

DIPLOMA WALLAH 5t Semester

Fabric CA features:

Native Fabric CA server (optional)

Support for external CAs (enterprise PKI systems)

Hierarchical CA structure (root and intermediate CAs)
e Dynamic enrollment and revocationibm+2
Additional Components:
8. Client Applications
o End-user interfaces that interact with the blockchain
o Use Fabric SDKs to submit transactions and query ledgers
e Run outside the blockchain networkdev+1
9. Fabric Gateway
» Simplifies client application development ’ &

» Routes transaction proposals to appropxi s

o Handles endorsement collection (b‘

e Manages transaction submissiorzb' erershyperledger-fabric.readthedocs

2\

N
Chaincode Design and Imple@tion

Chaincode is the core p able component of Hyperledger Fabric, defining
business logic and rules sset management. Proper chaincode design is critical

for network performance, security, and maintainability.hyperledger-
fabric.readthedocs+1

Chaincode Design Principles
1. Determinism

Requirement: Chaincode must produce the same output given the same input
across all endorsing peers.aws.amazon+1

Implications:
e Avoid random number generation
o Don't use system timestamps (use transaction timestamps from stub)
o No external API calls during execution

» No file system accessaws.amazon

14

https://diplomawallah.in/
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://dev.to/yongchanghe/hyperledger-fabric-architecture-456g
https://hyperledger-fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html

DIPLOMA WALLAH 5t Semester

Why: Non-deterministic chaincode causes endorsement mismatches, making
transactions invalid.

2. Statelessness

Principle: Chaincode should not maintain in-memory state between
invocations.hyperledger-fabric.readthedocs+1

Reason: Each chaincode invocation runs in isolated container; state must be
persisted to ledger.

Best practice: Always read from and write to world state via stub APIs.
3. Modularity

Design: Separate business logic into distinct functions.hyperledger-
fabric.readthedocs+1

Benefits:
o Easier testing and maintenance Q

o Clear endorsement policy mapping (%‘Q'

o Reusable components \\
4. Error Handling &

Requirement: Return appropriate @or error responses.hyperledger.github+2

Best practices: \Q

« Validate all inputs

e Check for null/u ined values
e Return descriptive error messages

o Use shim.success() and shim.error() appropriatelyhyperledger.github

5. Security
Considerations:
o Validate caller identity
o Enforce access controls
» Sanitize inputs to prevent injection attacks
e Protect sensitive dataaws.amazon
Chaincode Structure and Components

Basic Chaincode Template (Node.js):

15

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html

DIPLOMA WALLAH 5t Semester

javascript
const shim = require('fabric-shim');

const util = require('util');
class MyChaincode {

// Initialize chaincode (optional in Fabric 2.x)

async Init(stub) {
console.info('========= MyChaincode Init =========');
// Initialize ledger with default data if needed
await stub.putState('initialized', Buffer.from('true'));

return shim.success(); \

// Main entry point for invocations $
async Invoke(stub) {

console.info('=========®1aincode Invoke =========');

// Get function name a; parameters

let ret = stub.getFunctionAndParameters|();
console.info('Function: ' + ret.fcn);

console.info('Parameters: ' + ret.params);

// Route to appropriate function
let method = this[ret.fcn];
if ('method) {

return shim.error('Function ' + ret.fcn + ' not found');

16

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

try |

let response = await method(stub, ret.params);
return shim.success(response);
} catch (err) {

return shim.error(err.message);

// Business logic functions
async createAsset(stub, args) {

// Implementation

async read Asset(stub, args) {

// Implementation

async updateAsset(sj@gg{

// Implementation

async deleteAsset(stub, args) {

// Implementation

// Start chaincode
shim.start(new MyChaincode());
Key Chaincode APIs

17

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

1. State Management APIs
javascript
// Write data

await stub.putState(key, Buffer.from(JSON.stringify(value)));

// Read data

let valueBytes = await stub.getState(key);

if ('valueBytes | | valueBytes.length === 0) {
throw new Error('Asset not found');

}
let value = JSON.parse(valueBytes.toString());

o
// Delete data (b)
await stub.delState(key); (§\

2. Query APIs $

javascript
// Range query (Level DB and Co%@)
let iterator = await stub ' %yRange(startKey, endKey);
let results = []; @
while (true) {
let res = await iterator.next();
if (res.value && res.value.value.toString|()) {
let record = {
key: res.value.key,
value: JSON.parse(res.value.value.toStringy())
7
results.push(record);

}

if (res.done) {

18

https://diplomawallah.in/

DIPLOMA WALLAH

await iterator.close();

break;

// Rich query (CouchDB only)
let queryString = {
selector: {
owner: 'Alice’,

value: { $gt: 100 }

5

let iterator = await stub.getQueryResult]SON@ queryString));

3. Transaction Context APIs

javascript $
// Get transaction 1D @

let txId = stub.getTxID(); \

// Get transaction timestam;

let timestamp = stub.getTxTimestamp();

// Get channel ID
let channelld = stub.getChannellD();

// Get creator (submitter) identity
let creator = stub.getCreator();
4. Access Control APIs
javascript

// Get client identity (requires fabric-shim-crypto)

5t Semester

19

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

const Clientldentity = require('fabric-shim').Clientldentity;

let cid = new Clientldentity(stub);

// Get submitter's MISP ID
let mspld = cid.getMSPID();

// Get submitter's identity attributes

let attrValue = cid.getAttributeValue('role');

// Check if submitter has specific attribute
let hasAttr = cid.assertAttributeValue('role', 'admin');

5. Private Data APIs &

javascript

// Write to private data collection (§\

await stub.putPrivateData(collection, k{@lue) ;

// Read from private data collecti&o@

let value = await stub. Data(collection, key);

// Delete from private data collection

await stub.delPrivateData(collection, key);

6. Composite Key APIs

javascript

// Create composite key

let compositeKey = stub.createCompositeKey('assetType', [owner, assetld]);

await stub.putState(compositeKey, value);

// Query by partial composite key

let iterator = await stub.getStateByPartial CompositeKey(‘assetType', [owner]);

20

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

7. Event APIs

javascript

// Emit chaincode event

stub.setEvent('AssetCreated', Buffer.from(JSON.stringify ({
assetld: 'assetl’,
owner: 'Alice’,
timestamp: new Date().toISOString|()

0);

Chaincode Implementation Example

Complete Asset Management Chaincode (Node.js):

javascript
const shim = require('fabric-shim'); &
async Init(stub) { (b

console.info('=========5@ Chaincode Init =========');
return shim.succe&%\q
}

async Invoke(stub) {

class AssetChaincode {

let ret = stub.getFunctionAndParameters();

let method = this[ret.fcn];

if (Imethod) {

return shim.error('Function not found: ' + ret.fcn);

try |

21

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

let response = await method(stub, ret.params);
return shim.success(response);

} catch (err) {
console.error(err);

return shim.error(err.message);

// Create a new asset
async createAsset(stub, args) {
if (args.length !==4) {
throw new Error('Incorrect number of argume;\%pecting 4");

) \,\%Q
let assetld = args|[0]; $‘b
| O

let owner = args[1]; @

let value = parselnt(args

let description = ag@

// Check if asset already exists
let assetBytes = await stub.getState(assetld);
if (assetBytes && assetBytes.length > 0) {

throw new Error('Asset already exists: ' + assetld);

}
// Create asset object
let asset = {

docType: 'asset',

assetld: assetld,

22

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

owner: owner,
value: value,
description: description,

timestamp: stub.getTxTimestamp().seconds.low

// Save to ledger

await stub.putState(assetld, Buffer.from(JSON.stringify(asset)));

// Emit event
stub.setEvent('AssetCreated', Buffer.from(]SON.stri'gify(asset))) ;
console.info('Asset created: ' + assetld); @

return Buffer.from(]SON.stringify(asseta‘)b\

| >
// Read an asset \Q
async read Asset(stub &

if (args.length I= ;

throw new Error('Incorrect number of arguments. Expecting assetld');

let assetld = args[0];

let assetBytes = await stub.getState(assetld);

if (lassetBytes | | assetBytes.length === 0) {

throw new Error('Asset not found: ' + assetld);

23

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

return assetBytes;

// Update asset owner
async transferAsset(stub, args) {
if (args.length !==2) {

throw new Error('Incorrect number of arguments. Expecting assetld and
newOwner');

}

let assetld = args|[0];
let newOwner = args[1]; ’ &

// Get existing asset \\‘b
let assetBytes = await stub. getState(@% ;
{

if (lassetBytes | | asse’cBy’ces.leir1®gé“—L= 0)
throw new Error Asse@ d: ' + assetld);

N

let asset = JSON.parse(assetBytes.toString());

}

// Update owner
asset.owner = newOwner;

asset.timestamp = stub.getTxTimestamp().seconds.low;

// Save updated asset

await stub.putState(assetld, Buffer.from(JSON.stringify(asset)));

// Emit event

24

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

stub.setEvent('AssetTransferred', Buffer.from(JSON.stringify(asset)));

console.info('Asset transferred: ' + assetld + ' to ' + newOwner);

return Buffer.from(JSON.stringify(asset));

// Query assets by owner
async queryAssetsByOwner(stub, args) {
if (args.length !==1) {

throw new Error('Incorrect number of arguments. Expecting owner');

>
let owner = args[0]; \($.
>

// Build query (CouchDB) (b$
let queryString = { @
selector: { Q

docType: 'ass \Q ,

owner: owner

let iterator = await stub.getQueryResult(JSON.stringify (queryString));

let results = [];

while (true) {

let res = await iterator.next();

if (res.value && res.value.value.toString|()) {

25

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

let asset = JSON.parse(res.value.value.toStringy());

results.push(asset);

if (res.done) {
await iterator.close();

break;

return Buffer.from(JSON.stringify (results));
) Q
D
>

// Get asset history
async getAssetHistory(stub, args) { (b‘$

if (args.length 1==1) {
throw new Error('IncokEQumber of arguments. Expecting assetld');

TS
let assetld = args[0];

let iterator = await stub.getHistoryForKey(assetld);

let history = [];

while (true) {

let res = await iterator.next();

if (res.value) {
let record = {

txId: res.value.tx_id,

26

https://diplomawallah.in/

DIPLOMA WALLAH

timestamp: res.value.timestamp,
isDelete: res.value.is_delete,
value: res.value.value.toString()
17
history.push(record);

if (res.done) {
await iterator.close();

break;

shim.start(new AssetC)
Chaincode Deployme&cess
Step 1: Package Chaincode

bash

Navigate to chaincode directory

cd chaincode/ asset-chaincode

Install dependencies

npm install

Package chaincode

peer lifecycle chaincode package asset.tar.gz \

5t Semester

27

https://diplomawallah.in/

DIPLOMA WALLAH

--path chaincode/asset-chaincode \
--lang node \
--label asset_1.0

Step 2: Install on Peers

bash

Install on Orgl peer

peer lifecycle chaincode install asset.tar.gz

Install on Org2 peer (repeat for all orgs)
peer lifecycle chaincode install asset.tar.gz
Step 3: Approve Chaincode Definition
bash

Each organization approves

peer lifecycle chaincode approveformyorg \

&‘b‘

--channellD mychannel \

--name asset \ &
Q

--version 1.0 \ \
--package-id asset_1. a Q
--sequence 1 \
--tls --cafile orderer-ca.pem
Step 4: Commit Chaincode
bash
After sufficient approvals, commit to channel
peer lifecycle chaincode commit \
--channellD mychannel \
--name asset \
--version 1.0 \
--sequence 1 \

--tls --cafile orderer-ca.pem \

'\\‘b

>

5t Semester

28

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

--peerAddresses peer0.orgl:7051 --tlsRootCertFiles orgl-ca.pem \
--peerAddresses peer(.org2:7051 --tlsRootCertFiles org2-ca.pem
Step 5: Invoke Chaincode
bash
Create asset
peer chaincode invoke \
-0 orderer:7050 \
-C mychannel \
-n asset \

-c '{"function":"createAsset","Args":["asset1"," Alice","1000","Laptop"]}' \

. &
Query asset \(%Q)
peer chaincode query \ (&

-C mychannel \ $
-n asset \

-C '{"function":”readAsset","@"assetl"]}'

Chaincode Best PracticQ\

1. Input Validation

--tls --cafile orderer-ca.pem

o Always validate argument count and types

o Check for empty or null values

» Sanitize inputs to prevent injectionaws.amazon
2. Error Handling

o Use try-catch blocks

o Return descriptive error messages

o Log errors for debugginghyperledger.github+1

3. Access Control
o Verity caller identity before sensitive operations

o Use attribute-based access control (ABAC)

29

https://diplomawallah.in/
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html

DIPLOMA WALLAH 5t Semester

o Implement role-based permissionsaws.amazon
4. Performance

e Minimize state reads/writes

o Use composite keys for efficient queries

o Leverage private data collections for sensitive informationaws.amazon
5. Testing

o Unit test individual functions

o Integration test on test network

o Simulate various scenarios and edge caseshyperledger-fabric.readthedocs+1

6. Documentation
o Comment complex logic
e Document function parameters and return valu Q

e Maintain API documentation@g@readthedocs

V. N
L) O 4
Hyperledger Fabric II: Beyond Chainc =Fabric SDK and Front-End

While chaincode defines the busin 1c on the blockchain, applications need
interfaces to interact with the . Hyperledger Fabric provides Software
Development Kits (SDKs) th le developers to build client applications that
submit transactions, qu s, and listen for events.hyperledger.github+3

Hyperledger Fabric SD
Available SDKs:

1. Node.js SDK (Most mature and widely used)hyperledger.github+3

2. Java SDKhyperledger-fabric.readthedocs+1

3. Go SDKhyperledger-fabric.readthedocs+1

4. Python SDK (Under development)oak-tree+1

Note: As of Fabric v2.5, traditional SDKs are deprecated in favor of the Fabric
Gateway client API, which provides a simpler programming model.github+2

Node.js SDK (fabric-network)
Installation:

bash

30

https://diplomawallah.in/
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger.github.io/fabric-sdk-node/main/index.html
https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric-sdks.html
https://oak-tree.tech/blog/hyperledger-tools-deployment
https://github.com/hyperledger/fabric-sdk-node

DIPLOMA WALLAH 5t Semester

npm install fabric-network

Key packages:
o fabric-network: High-level API for application development
o fabric-common: Low-level API for fine-grained interactions
 fabric-ca-client: Client for Fabric Certificate Authority

o fabric-protos: Protocol buffers for gRPC communicationhyperledger.github+1

SDK Components and APIs
1. Connection Profile

Definition: JSON or YAML file describing network topology, including peers,
orderers, CAs, and channels.stackoverflow+2

Example (connection-profile.json):

json Q

("Q
"mame'": "test-network", \\
"version": "1.0.0", $

"client": { &
"organization": "Orgl", Q

"connection": { Q\'Q\

"timeout": {
"peer": { "endorser": "300" },

"orderer": "300"

b
"organizations": {
"Orgl": {
"mspid": "Org1MSP",
"peers": ["peer(.orgl.example.com"],

"certificateAuthorities": ["ca.orgl.example.com"]

31

https://diplomawallah.in/
https://hyperledger.github.io/fabric-sdk-node/
https://stackoverflow.com/questions/59340169/hyperledger-fabric-front-end-creation

DIPLOMA WALLAH 5t Semester

b
"peers": {
"peer0.orgl.example.com": {
"url": "grpcs:/ /localhost:7051",
"tIsCACerts": {

"path":
"crypto/ peerOrganizations/orgl.example.com/tlsca/tlsca.orgl.example.com-
cert.pem"

}

b &

"orderers": { \Q.
"orderer.example.com": { \\‘b
"url": "grpcs:/ /localhost:7050", &‘b‘

"tIsCACerts": {

O
"path': @

"crypto/ordererOrganization ple.com/orderers/orderer.example.com/msp/
tlscacerts/ tlsca.example, .I& t.pem"
} 5
}
b

"certificate Authorities": {
"ca.orgl.example.com": {
"url": "https:/ /localhost:7054",

"caName": "ca-orgl"

2. Wallet

32

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

Purpose: Securely store user identities (certificates and private
keys).stackoverflow+2

Types:
o File system wallet
e In-memory wallet (for testing)
o CouchDB wallet

o Redis wallet (for distributed applications)hyperledger.github

Example:
javascript

const { Wallets } = require('fabric-network');

// Create file system wallet &

const walletPath = path.join(__dirname, 'wallet') ;\Q'

const wallet = await Wallets.newFileSys’cem‘b alletPath);
// Add identity to wallet &
const identity = { \Q

credentials: { © &

certificate: certPEM,
privateKey: keyPEM
b
mspld: 'OrglMSP,
type: '’X.509'
b

await wallet.put(‘userl', identity);

// Retrieve identity from wallet
const userldentity = await wallet.get(‘userl');

3. Gateway

33

https://diplomawallah.in/
https://stackoverflow.com/questions/53994471/hyperledger-fabric-how-to-make-frontend
https://hyperledger.github.io/fabric-sdk-node/

DIPLOMA WALLAH 5t Semester

Purpose: Main entry point for connecting to the Fabric network and accessing
channels.hyperledger-fabric.readthedocs+2

Workflow:
1. Load connection profile
2. Connect to gateway using identity from wallet
3. Access channel
4. Get contract (chaincode)
5. Submit transactions or queries
6. Disconnectdev+2
Example:
javascript
const { Gateway, Wallets } = require('fabric-network'); Q
const fs = require('fs'); \Q
const path = require('path’); (§\(b
&

async function main() { @
try |

// Load connection pro l'e
const ccpPath = pat olve __dirname, 'connection-profile.json');

const ccp = JSON.parse(fs.readFileSync(ccpPath, 'utf8'));

// Create wallet
const walletPath = path.join(__dirname, 'wallet');

const wallet = await Wallets.newFileSystemWallet(walletPath);

// Check if identity exists in wallet
const identity = await wallet.get('userl');
if (lidentity) {

console.log('Identity not found in wallet');

34

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://dev.to/yongchanghe/hyperledger-fabric-architecture-456g

DIPLOMA WALLAH 5t Semester

return;

// Create gateway instance

const gateway = new Gateway();

// Connect to gateway

await gateway.connect(ccp, {
wallet: wallet,
identity: 'userl’,

discovery: { enabled: true, asLocalhost: true }

) \Q®
// Get network (channel) (§\(b

const network = await gateway. geé@ork('mychannel') ;

// Get contract (chaincode) \Q
const contract = neg Contract('asset');

// Submit transaction
console.log('Submit transaction: createAsset');
await contract.submitTransaction('createAsset', 'asset1', 'Alice', '1000', 'Laptop');

console.log('Transaction submitted successfully');

// Query ledger

console.log('Query: read Asset');
const result = await contract.evaluateTransaction('read Asset', 'asset1');

console.log('Query result:', result.toString());

35

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

// Disconnect

await gateway.disconnect();

} catch (error) {
console.error('Error:', error);

process.exit(1);

main();
4. Contract (Chaincode Interface)

Purpose: Represents a deployed chaincode, providing@ods to submit
transactions and queries.hvperledger-fabric.readchp‘HZ

Mg
Key methods: \\(b
javascript &

// Submit transaction (updates ledger (b
await contract.submitTransacti [&OHN&HIQ', 'argl', 'arg?', ...);

// Evaluate transaction (t@no ledger update)

const result = await contract.evaluateTransaction('functionName', 'argl’, 'arg?2’, ...);

// Create transaction object for finer control

const transaction = contract.createTransaction('functionName');
transaction.setEndorsingOrganizations('Org1MSP', 'Org2MSP");

await transaction.submit('argl', 'arg?2');

5. Event Listeners

Purpose: Listen for chaincode events, block events, or transaction events.dev+1
Example:

javascript

36

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://dev.to/yongchanghe/hyperledger-fabric-architecture-456g

DIPLOMA WALLAH 5t Semester

// Listen for chaincode events
const listener = async (event) => {
console.log('Event received:', event.eventName);

console.log('Payload:', event.payload.toString());
7

await contract.addContractListener(listener);

// Listen for block events
const blockListener = async (event) => {

console.log('Block number:', event.blockNumber);

console.log('Transactions:', event.blockData.data.da@gth) ;

1 \Q.
R
%\\

await network.addBlockListener(block er);
// Remove listeners \Q

contract.removeContractT®i (listener);

Building a Front-End Application

Front-end applications interact with Hyperledger Fabric through a backend REST
API built with the Fabric SDK.stackoverflow+2

Architecture:
text
[Front-End (React/ Angular/Vue)]
| HTTP/REST
[Backend API Server (Express.js + Fabric SDK)]
| gRPC
[Hyperledger Fabric Network]
Backend REST API Example (Node.js + Express)

37

https://diplomawallah.in/
https://stackoverflow.com/questions/59340169/hyperledger-fabric-front-end-creation

DIPLOMA WALLAH

Project structure:

text

application/

— server.js # Express server

|— fabric/

| |— network.js # Fabric network interaction
| |— wallet/ # User identities

| L— connection-profile.json

— routes/

| L—assetjs # API routes

L package.json

server.js:) &
\Q.

javascript

const express = require('express'); (§\

const bodyParser = require('body-pars?$

const cors = require('cors');

const assetRoutes = require('./ @s/ asset');
[]

const app = express(); :

const PORT = 3000;

// Middleware

app.use(cors());

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({ extended: true }));

// Routes

app.use('/api/assets', assetRoutes);

5t Semester

38

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

// Health check

app.get('/health', (req, res) => {
res.json({ status: 'OK' });

%

// Start server
app.listen(PORT, () => {
console.log(*Server running on port ${PORT}");
b
fabric/network.js:
javascript

const { Gateway, Wallets } = require('fabric-network'); &

const path = require('path'); @
const fs = require('fs'); (&

class FabricNetwork { &

constructor() {
L]

this.ccpPath = pat@ dirname, 'connection-profile.json');
this.walletPath = patl¥join(__dirname, 'wallet');

async connectToNetwork(userld) {

try {
// Load connection profile

const ccp = JSON.parse(fs.readFileSync(this.ccpPath, 'utf8'));

// Load wallet

const wallet = await Wallets.newFileSystemWallet(this.walletPath);

39

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

// Check identity
const identity = await wallet.get(userld);
if (lidentity) {

throw new Error(‘Identity ${userld} not found in wallet");

// Connect to gateway
const gateway = new Gateway();
await gateway.connect(ccp, {
wallet: wallet,
identity: userld,
discovery: { enabled: true, asLocalhost: true ;&
Y (%,Q .
»
// Get network and contract $(b‘

const network = await gatew@(?tNetwork('mychannel');

const contract = netwo@ontract('asset') ;
[]

return { gateway, ngwork, contract };

} catch (error) {
console.error('Failed to connect to network:', error);

throw error;

async disconnectFromNetwork(gateway) {
if (gateway) {

await gateway.disconnect();

40

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

module.exports = FabricNetwork;
routes/asset.js:

javascript

const express = require('express');
const router = express.Router();

const FabricNetwork = require('../ fabric/ network');

const fabricNetwork = new FabricNetwork(); \Q®

// Create asset (§\(b
router.post('/', async (req, res) => { $

try {
const { assetld, owner, Vaﬁ&scription } = req.body;

const userld = req, ser-id'] | | 'userl’;
const { gateway, contract } = await fabricNetwork.connectToNetwork(userld);

await contract.submitTransaction('createAsset', assetld, owner, value,
description);

await fabricNetwork.disconnectFromNetwork(gateway);
res.json({

success: true,

message: 'Asset created successfully’,

41

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

assetld: assetld
1

} catch (error) {
console.error('Error creating asset:', error);
res.status(500).json({
success: false,

message: error.message

// Get asset

router.get('/:assetld', async (req, res) => { (&
try { (b‘

const { assetld } = req.params;

const userld = req.hea.der -id'] | | 'userl’;
»
const { gateway, C&It } = await fabricNetwork.connectToNetwork(userld);
const result = await contract.evaluateTransaction('read Asset', assetld);
await fabricNetwork.disconnectFromNetwork(gateway);
res.json({

success: true,

data: JSON.parse(result.toString())
D

42

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

} catch (error) {
console.error('Error reading asset:', error);
res.status(500).json({
success: false,

message: error.message

// Transfer asset

router.put('/:assetld/transfer', async (req, res) => {
try | &

const { assetld } = req.params; \
const { newOwner } = req.body; %

const userld = req.headers['user-id. userl’;

»

await contract.submitTransaction('transferAsset', assetld, newOwner);

const { gateway, contract \Egait fabricNetwork.connectToNetwork(userld);

await fabricNetwork.disconnectFromNetwork(gateway);

res.json({
success: true,

message: 'Asset transferred successfully'

1)

} catch (error) {

console.error('Error transferring asset:', error);

43

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

res.status(500).json({
success: false,

message: error.message

// Query assets by owner
router.get('/owner/:owner', async (req, res) => {

try |

const { owner } = req.params;

const userld = req.headers['user-id'] | | 'userl}; &
const { gateway, contract } = await fabéi%&\\/vork.ConnectToNetwork(userId);

const result = await contract.e@ﬁeTransaction('queryAssetsByOwner',
owner); \Q
\ :

await fabricNetworkwdisconnectFromNetwork(gateway);

res.json({
success: true,

data: JSON.parse(result.toString())
D

} catch (error) {
console.error('Error querying assets:', error);
res.status(500).json({

success: false,

44

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

message: error.message

module.exports = router;

Front-End Example (React)

Component to interact with REST API:
javascript

import React, { useState, useEffect } from 'react’;
import axios from 'axios';

const API_BASE = 'http:/ /localhost:3000/ api'\(%‘Q

function AssetManager() { $

const [assets, setAssets]| = useSt Cb
const [assetld, setAssetld] =\%®ate(");
const [owner, setOw év tate(");
const [value, setValue] #useState(");

const [description, setDescription] = useState(");

// Fetch assets

const fetchAssets = async (ownerName) => {

try |

const response = await axios.get(
“${API_BASE}/assets/owner/${ownerName},

{ headers: { 'user-id": 'user1' } }

)

setAssets(response.data.data);

45

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

} catch (error) {

console.error('Error fetching assets:', error);

// Create asset
const createAsset = async (e) => {

e.preventDefault();

try |

const response = await axios.post(
“${API_BASE}/assets",
{ assetld, owner, value, description }, &

S
alert('Asset created: ' + response@ssetld);

J/ Clear form @

setAssetld(");

N
setOwner(") &

setValue("

{ headers: { 'user-id": 'user1' } }

setDescription(")
} catch (error) {
console.error('Error creating asset:', error);

alert('Error: ' + error.response.data.message);

return (
<div>

<h1>Asset Management</h1>

46

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

<h2>Create Asset</h2>
<form onSubmit={createAsset}>

<input placeholder="Asset ID" value={assetld} onChange={(e) =
setAssetld(e.target.value)} required />

<input placeholder="Owner" value={owner} onChange={(e) =>
setOwner(e.target.value)} required />

<input placeholder="Value" value={value} onChange={(e) =>
setValue(e.target.value)} required />

<input placeholder="Description" value={description} onChange={(e) =>
setDescription(e.target.value)} required />

<button type="submit">Create</button>

</form> Q

<h2>Query Assets</h2> \\

<button onClick={() => fetchAsse@‘pcve')PShow Alice's Assets</button>

 @
{assets.map((as t Q
<li key—{ldﬁ

{asset.assetld}: {asset.description} (Owner: {asset.owner}, Value:
{asset.value})

N}
< / ul>

</div>

export default AssetManager;
SDK Best Practices

47

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

1. Connection Management
o Reuse gateway connections when possible
o Close gateway connections after use

o Implement connection pooling for high-traffic applicationshyperledger-
fabric.readthedocs+1

2. Error Handling
o Wrap SDK calls in try-catch blocks
o Handle network errors gracefully

o Provide meaningful error messages to usershyperledger.github+1

3. Identity Management
o Store credentials securely
o Implement proper authentication ¢ Q
o Use role-based access controlhyperledger.g§;gg'
4. Performance \\
o Use evaluateTransaction for quer@ sn't invoke consensus)
o Use submitTransaction only @er updates
e Batch transactions whe@ ehyperledger-fabric.readthedocs+1

5. Event Handling
« Always remove e listeners when done
o Handle listener errors appropriately

o Consider event replay for missed eventshyperledger.github

Hyperledger Composer Tool

Note: As of August 29, 2019, Hyperledger Composer has been officially deprecated
and is no longer actively maintained.stackoverflow+4

Deprecation reasons:

1. Dual programming models: Composer created confusion by offering a
separate programming model from native Fabric chaincode.stackoverflow+1

2. Feature lag: Difficult to keep pace with latest Fabric features (e.g., private data
collections).stackoverflow

48

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://hyperledger.github.io/fabric-sdk-node/
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer

DIPLOMA WALLAH 5t Semester

3. Limited adoption: Most users reverted to native Fabric development after
POC stage.stackoverflow+1

Recommendation: Use Hyperledger Fabric v1.4+ native development instead,
which offers significant improvements to the developer experience.github+3

What Was Hyperledger Composer?

Definition: Hyperledger Composer was an application development framework
designed to simplify and accelerate the creation of Hyperledger Fabric blockchain

applications.github+3

Target users: Business analysts and developers without deep blockchain
expertise.geeksforgeeks+1

Key Concepts in Hyperledger Composer
1. Business Network Archive (BNA)
o Central artifact containing all business network C@gonents

o Packaged as .bna file

¢ Included model files, transaction loglc@ control rulesinvestopedia+1

2. Assets
o Resources that can be exchange@ properties, vehicles)
o Defined with unique identi nd attributes
o Could be tangible or i 1blegeeksforgeeks

3. Participants
o Members of the business network (e.g., buyers, sellers)
o Had unique identities

o Could own assets and participate in transactionsgeeksforgeeks

4. Transactions
e Operations that change asset states
o Defined business logic for asset exchanges

e Automatically recorded on blockchaingeeksforgeeks

5. Access Control
o Rules defining who can do what
o Specified in Access Control Language (ACL)

o Enforced by Composer runtimegeeksforgeeks

49

https://diplomawallah.in/
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://github.com/hyperledger-archives/composer-tools
https://github.com/hyperledger-archives/composer
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.investopedia.com/terms/h/hyperledger-composer.asp
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/

DIPLOMA WALLAH 5t Semester

6. Queries
e Predefined or ad-hoc data retrieval
o Expressed in Composer Query Language

e Returned filtered resultsgeeksforgeeks

7. Events
o Notifications emitted by transactions
o Could trigger external system actions

e Subscribed to by client applicationsgeeksforgeeks

Composer Architecture Components
1. Modeling Language
o Domain-specific language for defining business networks

o .cto files (CTO = Composer Type Object) &

(%Q.

o Declarative syntaxinvestopedia+1

Example:

text $‘b

namespace org.example &
asset Car identified by i &

o String vin
o String make
o String model

--> Person owner

participant Person identified by email {
o String email
o String firstName

o String lastName

}

50

https://diplomawallah.in/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.investopedia.com/terms/h/hyperledger-composer.asp

DIPLOMA WALLAH 5t Semester

transaction TransferCar {
--> Car car
--> Person newOwner
2. Transaction Processor Functions
o JavaScript functions implementing transaction logic

o Automatically invoked when transactions submittedgeeksforgeeks

3. Access Control Language
e Declarative rules in .acl files

o Specified permissions for participantsgeeksforgeeks

4. Composer Playground &

o Web-based tool for developing and tesu'@ﬁess networks
» No installation required %
» Rapid prototyping environmenta’@opedia+1
5. Composer REST Server @
e Automatically generate}s@T API for business network
o Swagger-docum . points

o Enabled rapid frontYend developmentinvestopedia+1

6. Composer CLI
o Command-line tools for managing business networks

o Deploy, update, test networksgeeksforgeeks

Why Composer Was Deprecated

Despite initial popularity for rapid prototyping, Composer faced fundamental
limitations:stackoverflow+1

1. Abstraction Cost
o Abstracted away Fabric concepts, creating learning gap

o Users struggled to transition from Composer to production-grade
Fabricstackoverflow+1

2. Maintenance Burden

51

https://diplomawallah.in/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.investopedia.com/terms/h/hyperledger-composer.asp
https://www.investopedia.com/terms/h/hyperledger-composer.asp
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric

DIPLOMA WALLAH 5t Semester

e Required constant updates to match Fabric evolution

 Difficult to expose new Fabric features through Composer
abstractionstackoverflow

3. Production Concerns
» Not suitable for production deployments

o Lacked full feature set of native Fabricstackoverflow+1

o Performance overhead from abstraction layerstackoverflow
4. Governance Model Mismatch

o Composer's centralized governance model didn't align with Fabric 2.x's
decentralized chaincode lifecyclestackoverflow

Migration Path

Organizations using Composer should migrate to natjvg@perledger Fabric
development:github+2 \

Recommended approach: (%‘Q
1. Understand native Fabric: Learn Cha'%é development in Go, Node.js, or
Javahyperledger-fabric.readthedog

2. Rewrite business logic: Conv mposer transaction processors to

-fabric.readthedocs

se Fabric's built-in MSP and attribute-based
-fabric.readthedocs+1

4. Build client applications: Use Fabric SDKs directlygithub+2

5. Test thoroughly: Validate migrated functionality on test
networkhvyperledger-fabric.readthedocs+1

Resources for migration:
o Official Fabric documentation
» Fabric samples repository

o Commercial paper tutorial (good starting point)hyperledger-
fabric.readthedocs+1

Summary of Key Concepts

This unit covered the architecture and development aspects of Hyperledger Fabric:

52

https://diplomawallah.in/
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://github.com/hyperledger-archives/composer-tools
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://github.com/hyperledger/fabric-sdk-node
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html

DIPLOMA WALLAH 5t Semester

1. Decomposing the Consensus Process: Examined how consensus mechanisms can
be broken into distinct phases (transaction proposal, broadcast, validation, voting,
finalization, propagation) and components (election, proposal/acceptance,
agreement, commitment). Explored Fabric's unique execute-order-validate model.

2. Hyperledger Fabric Components: Detailed study of seven core components:

o Peers: Host ledgers and chaincode; endorsing, committing, anchor, and leader
types

o Orderers: Order transactions and create blocks using Raft consensus
o Chaincode: Smart contracts written in Go, Node.js, or Java

e MSP: Manages identities and access control via X.509 certificates

o Channels: Enable private transactions with separate ledgers

o Ledger: Consists of blockchain (transaction log) and world state (current
values)

o Certificate Authority: Issues and managesrdigital’certificates

3. Chaincode Design and Implementation: Govered design principles
(determinism, statelessness, modularity, errgihandling, security), key APIs (state
management, queries, transaction contextagcéss control, private data, events),
complete implementation examples, anndhdeployment process.

4. Fabric SDK and Front-End Dewvelopment: Explored Node.js SDK (fabric-network
package), key components (conhgetion profile, wallet, gateway, contract), event
listeners, building backend REST APIs with Express.js, and integrating front-end
applications (React/ Angular/Vte) with blockchain backend.

5. Hyperledger Composer Tool: Historical perspective on the deprecated Composer
framework, its key concepts (assets, participants, transactions, BNA), architecture
components, reasons for deprecation, and migration path to native Fabric
development.

Practice Questions

Question 1: Explain Hyperledger Fabric's execute-order-validate consensus model
and compare it to the traditional order-execute model used by Bitcoin and Ethereum.
Discuss the advantages of Fabric's approach for enterprise blockchain applications.

Question 2: Describe the complete transaction flow in Hyperledger Fabric from
client proposal to ledger update. Include the roles of endorsing peers, ordering
service, and committing peers, and explain how the Membership Service Provider
(MSP) ensures security throughout the process.

53

https://diplomawallah.in/

DIPLOMA WALLAH 5t Semester

Diploma Wallah

Made with # by Sangam

54

https://diplomawallah.in/

