
DIPLOMA WALLAH 5th Semester

1

BLOCK CHAIN TECHNOLOGY

DIPLOMA WALLAH

OPEN ELECTIVE

Jharkhand University Of Technology (JUT)

UNIT - III: HYPERLEDGER FABRIC ARCHITECTURE AND DEVELOPMENT

Decomposing the Consensus Process

Consensus in blockchain systems can be decomposed into distinct phases and

components to better understand how distributed nodes reach agreement. Unlike

monolithic consensus mechanisms (like PoW), modern enterprise blockchains

separate consensus into multiple specialized stages.geeksforgeeks+2

General Consensus Process Decomposition

Phase 1: Transaction Proposal

A participant (node) or leader proposes a new transaction or block that must comply

with the network's protocol rules.geeksforgeeks+1

Phase 2: Transaction Broadcast

The proposed transaction or block is broadcast to other nodes in the network for

validation.geeksforgeeks+1

Phase 3: Validation

Nodes verify the transaction or block based on predefined rules, checking

signatures, permissions, and business logic.geeksforgeeks+1

Phase 4: Consensus Voting

Nodes communicate with each other to reach agreement on the proposed transaction

or block. The specific voting method varies by consensus mechanism.persistent+2

Phase 5: Agreement and Finalization

Once a sufficient number of nodes agree on the proposed transaction or block, it is

added to the blockchain.geeksforgeeks+1

Phase 6: Propagation

The updated ledger, now including the new block, is propagated to all nodes in the

network to ensure they all have the same view of the blockchain.geeksforgeeks+1

Components of Consensus Mechanisms

https://diplomawallah.in/
https://www.geeksforgeeks.org/computer-networks/cryptographic-consensus-mechanisms-in-blockchain/
https://www.geeksforgeeks.org/compiler-design/consensus-algorithms-in-blockchain/
https://www.geeksforgeeks.org/computer-networks/cryptographic-consensus-mechanisms-in-blockchain/
https://www.geeksforgeeks.org/compiler-design/consensus-algorithms-in-blockchain/
https://www.persistent.com/wp-content/uploads/2017/04/WP-Understanding-Blockchain-Consensus-Models.pdf
https://www.geeksforgeeks.org/computer-networks/cryptographic-consensus-mechanisms-in-blockchain/
https://www.geeksforgeeks.org/compiler-design/consensus-algorithms-in-blockchain/

DIPLOMA WALLAH 5th Semester

2

Consensus protocols can be decomposed into several distinct components, each

responsible for a specific aspect:venom

1. Election Component

• Purpose: Select a leader or set of validators responsible for proposing

blocks.geeksforgeeks+1

• Methods:

o Round-robin rotation

o Stake-based selection

o Random selection with cryptographic guarantees

o Voting-based electiongeeksforgeeks+1

Example: In Raft, nodes elect a leader through randomized timeouts and majority

voting. In Kafka-based ordering, leaders are elected through ZooKeeper

coordination.geeksforgeeks

2. Proposal and Acceptance Component

• Purpose: Leader proposes a value or block; other nodes evaluate and accept

or reject.venom+1

• Process:

o Leader constructs a proposal containing transactions

o Proposal broadcast to validator nodes

o Validators check proposal validity

o Validators signal acceptance or rejectiongeeksforgeeks

3. Agreement Component

• Purpose: Reach majority consensus on the proposed value.venom+1

• Threshold: Different mechanisms require different agreement thresholds:

o Simple majority (>50%)

o Supermajority (>66.6% for Byzantine Fault Tolerance)

o Unanimous agreement (some permissioned systems)geeksforgeeks

4. Commitment Component

• Purpose: Finalize the agreed-upon decision and commit to the

ledger.venom+1

https://diplomawallah.in/
https://docs.venom.foundation/learn/consensus/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://docs.venom.foundation/learn/consensus/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://docs.venom.foundation/learn/consensus/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://docs.venom.foundation/learn/consensus/

DIPLOMA WALLAH 5th Semester

3

• Action: Once consensus is reached, all nodes commit the agreed-upon values

to their local copies of the blockchain or database.geeksforgeeks

Execute-Order-Validate vs. Order-Execute

Traditional Order-Execute Model (Bitcoin, Ethereum):

1. Order: Transactions are ordered into blocks by miners/validators

2. Execute: All nodes execute all transactions sequentially

3. Validate: Nodes validate execution results and update state

Limitations:

• Sequential execution limits throughput

• All nodes must execute all transactions

• Non-deterministic smart contracts can cause forks

• Limited privacy (all nodes see all data)educative+1

Hyperledger Fabric's Execute-Order-Validate Model:

1. Execute (Endorsement): Selected peers simulate transactions in parallel

before ordering

2. Order: Ordering service sequences endorsed transactions into blocks

3. Validate: All peers validate endorsements and apply state changes

Advantages:

• Parallel transaction execution

• Privacy through selective endorsement

• Deterministic validation

• Better scalabilitygeeksforgeeks+1

This decomposition enables Hyperledger Fabric to achieve higher performance and

flexibility compared to traditional blockchain architectures.

Hyperledger Fabric Components

Hyperledger Fabric is a modular, permissioned blockchain platform designed for

enterprise use. Its architecture consists of several specialized components working

together to provide a secure, scalable distributed ledger system.ibm+3

1. Peer Nodes

https://diplomawallah.in/
https://www.geeksforgeeks.org/computer-networks/consensus-in-hyperledger-fabric/
https://www.educative.io/answers/how-do-transactions-work-in-hyperledger-fabric
https://www.geeksforgeeks.org/computer-networks/transaction-flow-in-hyperledger-fabric/
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric

DIPLOMA WALLAH 5th Semester

4

Definition: Peers are fundamental nodes in the Fabric network that host copies of

ledgers and smart contracts (chaincode).softwaremill+3

Key functions:

• Maintain blockchain ledgers and world state databases

• Execute and host chaincode (smart contracts)

• Validate transactions

• Commit blocks to the ledger

• Communicate with other peers via gossip protocolhyperledger-

fabric.readthedocs+2

Peer characteristics:

• A peer belongs to one organization but can participate in multiple

channelssoftwaremill+1

• Each peer can host multiple ledgers (one per channel) and multiple

chaincodeshyperledger-fabric.readthedocs+1

• Typically, organizations run multiple peers for redundancy and load

handlingspydra+1

Types of peers:

a) Endorsing Peers

• Execute chaincode to simulate transactions

• Generate transaction proposals with read-write sets

• Sign endorsement responses

• Must satisfy endorsement policies for transactions to be valideducative+2

b) Committing Peers

• All peers are committing peers

• Receive blocks from orderers

• Validate transactions against endorsement policies

• Commit valid transactions to the ledger

• Update world state databasegeeksforgeeks+1

c) Anchor Peers

• Designated peers that other organizations can discover

• Facilitate cross-organization communication

https://diplomawallah.in/
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://www.spydra.app/blog/architecture-of-hyperledger-fabric-an-in-depth-guide
https://www.educative.io/answers/how-do-transactions-work-in-hyperledger-fabric
https://www.geeksforgeeks.org/computer-networks/transaction-flow-in-hyperledger-fabric/

DIPLOMA WALLAH 5th Semester

5

• One per organization per channelsoftwaremill+1

d) Leader Peers

• Responsible for distributing transactions from orderers to other peers in the

organization

• Elected dynamically or statically configuredhyperledger-fabric.readthedocs+1

Peer architecture components:

• Ledger: Stores blockchain (transaction log) and world state (current key-value

pairs)

• Chaincode containers: Separate Docker containers running chaincode logic

• Gossip protocol: Peer-to-peer communication for data dissemination

• State database: LevelDB (default, embedded) or CouchDB (optional,

external)stackoverflow+2

2. Orderer Nodes (Ordering Service)

Definition: Orderers are specialized nodes responsible for ordering transactions and

creating blocks, but they do not execute transactions or maintain

ledgers.geeksforgeeks+3

Primary functions:

a) Transaction Ordering

• Receive endorsed transactions from clients

• Order transactions chronologically across the network

• Package ordered transactions into blocks

• Distribute blocks to all committing peersibm+2

Critical distinction: If transactions were ordered at peers themselves, it would

increase the possibility of state forks where different peers have different transaction

orders.ibm

b) Maintaining Orderer System Channel

• Stores the consortium definition (list of organizations permitted to create

channels)

• Maintains network-level configurationibm

c) Identity Validation

• Validates organization membership against consortium

• Enforces channel permissions

https://diplomawallah.in/
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledger-fabric.readthedocs.io/en/latest/peers/peers.html
https://stackoverflow.com/questions/47505084/difference-between-chain-and-state-database-in-hyperledger-fabric/47508562
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric

DIPLOMA WALLAH 5th Semester

6

• Validates transaction channel configurationsibm

d) Channel Management

• Creates new channels

• Manages channel membership

• Enforces channel policiesgeeksforgeeks+1

Types of ordering services:

1. Solo Orderer

• Single orderer node

• No fault tolerance

• Use case: Development and testing onlygeeksforgeeks

2. Kafka Orderer (Deprecated)

• Cluster of orderers using Apache Kafka for consensus

• Crash fault tolerant (CFT)

• Use case: Production networks (older versions)geeksforgeeks

3. Raft Orderer (Current Recommended)

• Cluster of orderers using Raft consensus algorithm

• Crash fault tolerant (CFT)

• Simpler than Kafka, no external dependencies

• Use case: Production networks (Fabric 1.4.1+)geeksforgeeks+1

4. BFT Orderer (Future)

• Byzantine Fault Tolerant ordering

• Can tolerate malicious orderers

• Under developmentgeeksforgeeks

Orderer characteristics:

• Does not process smart contracts or execute transactionslinkedin+1

• Does not maintain ledgers (only orders and distributes)ibm

• Modular design allows pluggable consensus implementationslinkedin

• Can be shared across multiple channelsibm

3. Chaincode (Smart Contracts)

https://diplomawallah.in/
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.geeksforgeeks.org/computer-networks/hyperledger-fabric-component-design/
https://www.linkedin.com/pulse/hyperledger-fabric-architecture-components-flow-chandrasekaran
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric
https://www.linkedin.com/pulse/hyperledger-fabric-architecture-components-flow-chandrasekaran
https://www.ibm.com/docs/en/blockchain-platform/2.5.2?topic=reference-hyperledger-fabric

DIPLOMA WALLAH 5th Semester

7

Definition: Chaincode is Hyperledger Fabric's term for smart contracts—

programmable business logic that defines assets and transaction

rules.aws.amazon+2

Supported languages:

• Go (Golang): Most mature and performant

• Node.js (JavaScript/TypeScript): Good developer experience

• Java: Enterprise-friendly optionaws.amazon+3

Chaincode lifecycle (Fabric 2.x):

1. Package: Bundle chaincode source code into deployable package

2. Install: Install chaincode package on endorsing peers

3. Approve: Organizations approve chaincode definition

4. Commit: Commit chaincode definition to channel once sufficient approvals

received

5. Invoke: Execute chaincode functions via transactionshyperledger-

fabric.readthedocs+1

Chaincode structure:

Basic components:

• Init function: Initializes chaincode state (optional in Fabric 2.x)

• Invoke functions: Business logic functions for querying and updating state

• Shim library: Provides APIs to interact with Fabric peersgithub+2

Example (Node.js):

javascript

const shim = require('fabric-shim');

class MyChaincode {

 async Init(stub) {

 // Initialization logic

 return shim.success();

 }

https://diplomawallah.in/
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/java-chaincode.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://github.com/hyperledger/fabric-chaincode-java

DIPLOMA WALLAH 5th Semester

8

 async Invoke(stub) {

 let ret = stub.getFunctionAndParameters();

 let method = this[ret.fcn];

 return method(stub, ret.params);

 }

 async createAsset(stub, args) {

 // Business logic to create asset

 await stub.putState(key, value);

 return shim.success();

 }

 async queryAsset(stub, args) {

 // Business logic to query asset

 let value = await stub.getState(key);

 return shim.success(value);

 }

}

shim.start(new MyChaincode());

Chaincode execution model:

• Chaincode runs in separate Docker containers, isolated from peer

processeshyperledger.github+1

• Executes in response to transaction proposals

• Reads from and writes to world state via CouchDB or LevelDB

• Cannot directly access external systems (must use oracles)aws.amazon+1

Chaincode APIs:

• putState(key, value): Write key-value pair to world state

• getState(key): Read value for key from world state

https://diplomawallah.in/
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html

DIPLOMA WALLAH 5th Semester

9

• delState(key): Delete key from world state

• getStateByRange(startKey, endKey): Range query

• getQueryResult(query): Rich query (CouchDB only)

• getHistoryForKey(key): Query all historical values for a

keyhyperledger.github+2

4. Membership Service Provider (MSP)

Definition: MSP is the component that defines the rules by which identities are

validated, authenticated, and given access to participate in a Hyperledger Fabric

network.astconsulting+3

Primary functions:

a) Identity Management

• Defines which Certificate Authorities (CAs) are trusted

• Establishes organizational membership

• Maps certificates to roles and permissionsdev+2

b) Authentication

• Verifies participant identities using X.509 certificates

• Ensures only authorized entities can submit transactionsastconsulting+1

c) Authorization

• Enforces access control policies

• Determines what actions each identity can performdev+1

MSP structure:

Root Certificates:

• Root CA certificate: Establishes root of trust for organization

• TLS CA certificate: For secure peer-to-peer communicationibm+1

Intermediate Certificates (Optional):

• Intermediate CA certificates: Chain of trust between root and leaf

certificatesibm

Admin Certificates:

• Identify administrators with elevated privileges

• Required for network operations (creating channels, installing

chaincode)astconsulting+1

https://diplomawallah.in/
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric

DIPLOMA WALLAH 5th Semester

10

Node Certificates:

• Each peer, orderer, and client has unique identity certificate

• Organizational Unit (OU) attributes distinguish node typesibm

Revocation Lists (Optional):

• List of revoked certificates that should no longer be trustedhyperledger-

fabric.readthedocs+1

Types of MSPs:

1. Local MSP

• Defined for each node (peer, orderer) and client

• Contains node's own identity certificates

• Controls what the node can dostackoverflow+2

2. Channel MSP

• Defined at channel level

• Lists all organizations participating in the channel

• Specifies which identities are members of each organization

• Enforced by all channel membersstackoverflow+2

MSP configuration:

Each MSP includes:

• MSP identifier (unique name)

• Root CA certificates (trust anchors)

• Admin certificates

• Organizational Units (optional)

• Certificate revocation lists (optional)hyperledger-fabric.readthedocs+1

Certificate Authority (CA) relationship:

MSPs work with CAs to manage the identity lifecycle:

1. CA enrolls participants and issues certificates

2. MSP validates certificates against trusted CA roots

3. MSP authorizes actions based on certificate attributesdev+2

Example: A university blockchain network might have:

https://diplomawallah.in/
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://stackoverflow.com/questions/52357596/hyperledger-fabric-docs-on-membership-service-provider-questions
https://stackoverflow.com/questions/52357596/hyperledger-fabric-docs-on-membership-service-provider-questions
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30

DIPLOMA WALLAH 5th Semester

11

• University MSP: Defines university administrators and professors (can create

credentials)

• Student MSP: Defines students (can only read credentials)dev

5. Channels

Definition: Channels are private communication pathways that allow subsets of

network participants to conduct confidential transactions.hyperledger-

fabric.readthedocs+3

Key characteristics:

a) Data Isolation

• Each channel has a completely separate ledgerhyperledger-

fabric.readthedocs+1

• Transactions on one channel are invisible to other

channelshyperledgendary.github+1

• Organizations can participate in multiple channels

simultaneouslysoftwaremill+1

b) Privacy

• Only channel members can access channel data

• Different endorsement policies per channel

• Enables competing organizations to use same network without sharing

sensitive datahyperledgendary.github

Channel components:

• Channel configuration: Defines members, policies, and parameters

• Channel ledger: Independent blockchain and world state

• Channel MSPs: Identity definitions for channel members

• Chaincode: Can be instantiated on multiple channels independentlyspydra+2

Use cases:

• Industry consortiums with competing members

• Supply chains with confidential pricing

• Financial networks with regulatory partitionshyperledgendary.github

6. Ledger

https://diplomawallah.in/
https://dev.to/yongchanghe/hyperledger-fabric-and-msp-5g30
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledgendary.github.io/unstable-fabric-docs/fabric_model.html
https://softwaremill.com/hyperledger-fabric-cheat-sheet/
https://hyperledgendary.github.io/unstable-fabric-docs/fabric_model.html
https://www.spydra.app/blog/architecture-of-hyperledger-fabric-an-in-depth-guide
https://hyperledgendary.github.io/unstable-fabric-docs/fabric_model.html

DIPLOMA WALLAH 5th Semester

12

Definition: The ledger in Hyperledger Fabric consists of two components: the

blockchain (transaction log) and the world state (current state

database).hyperledger-fabric.readthedocs+3

Component 1: Blockchain (Transaction Log)

Structure:

• Immutable, sequenced record of all transactions

• Stored as a file-based ledger with serialized blocks

• Each block contains one or more transactions

• Blocks linked cryptographically via hasheshyperledger-fabric.readthedocs+2

Block structure:

• Block header: Block number, current block hash, previous block hash,

transaction count

• Block data: Array of transactions with read-write sets

• Block metadata: Signatures, endorsements, validation codeshyperledger-

fabric.readthedocs+1

Characteristics:

• Append-only (cannot modify or delete past transactions)

• Definitive source of truth

• Can be used to rebuild world state if neededstackoverflow+1

Component 2: World State (State Database)

Purpose:

• Holds current values for all keys ever included in the blockchaingithub+3

• Provides fast access to latest state without traversing entire

blockchainhyperledger-fabric.readthedocs+1

• Automatically regenerated from blockchain if neededstackoverflow+1

State database options:

a) LevelDB (Default)

• Embedded key-value database

• Runs within peer process

• Supports key-based lookups and range queries

• Stores data as simple key-value pairsgithub+2

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger.html
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger.html
https://stackoverflow.com/questions/47505084/difference-between-chain-and-state-database-in-hyperledger-fabric/47508562
https://github.com/hyperledger/fabric-docs-i18n/blob/release-2.5/docs/locale/fr_FR/source/ledger.rst
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://stackoverflow.com/questions/47505084/difference-between-chain-and-state-database-in-hyperledger-fabric/47508562
https://github.com/hyperledger/fabric-docs-i18n/blob/release-2.5/docs/locale/fr_FR/source/ledger.rst

DIPLOMA WALLAH 5th Semester

13

b) CouchDB (Optional)

• External NoSQL document database

• Stores data as JSON documents

• Supports rich queries using Mango query language

• Enables complex queries on chaincode data structure

• Better for applications requiring sophisticated queriesgithub+2

World state operations:

• Create: Add new key-value pair

• Update: Modify existing key's value

• Delete: Remove key-value pair

• Query: Retrieve current value(s)hyperledger-fabric.readthedocs+1

Ledger per channel:

• Each channel has its own independent ledger

• Peers maintain separate ledgers for each channel they join

• Prevents data leakage between channelshyperledger-fabric.readthedocs+2

Ledger features:

• Query using key-based lookups

• Range queries

• Composite key queries

• Rich queries (CouchDB only)

• Full history retrieval for any keyhyperledger-fabric.readthedocs+1

7. Certificate Authority (CA)

Definition: The CA issues and manages digital certificates for network

participants.astconsulting+2

Functions:

• Enrollment: Issue identity certificates to new members

• Re-enrollment: Refresh certificates before expiration

• Revocation: Invalidate compromised certificates

• Attribute management: Assign roles and attributes to

identitiesastconsulting+1

https://diplomawallah.in/
https://github.com/hyperledger/fabric-docs-i18n/blob/release-2.5/docs/locale/fr_FR/source/ledger.rst
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric
https://astconsulting.in/blockchain/membership-service-providers-in-hyperledger-fabric

DIPLOMA WALLAH 5th Semester

14

Fabric CA features:

• Native Fabric CA server (optional)

• Support for external CAs (enterprise PKI systems)

• Hierarchical CA structure (root and intermediate CAs)

• Dynamic enrollment and revocationibm+2

Additional Components:

8. Client Applications

• End-user interfaces that interact with the blockchain

• Use Fabric SDKs to submit transactions and query ledgers

• Run outside the blockchain networkdev+1

9. Fabric Gateway

• Simplifies client application development

• Routes transaction proposals to appropriate peers

• Handles endorsement collection

• Manages transaction submission to orderershyperledger-fabric.readthedocs

Chaincode Design and Implementation

Chaincode is the core programmable component of Hyperledger Fabric, defining

business logic and rules for asset management. Proper chaincode design is critical

for network performance, security, and maintainability.hyperledger-

fabric.readthedocs+1

Chaincode Design Principles

1. Determinism

Requirement: Chaincode must produce the same output given the same input

across all endorsing peers.aws.amazon+1

Implications:

• Avoid random number generation

• Don't use system timestamps (use transaction timestamps from stub)

• No external API calls during execution

• No file system accessaws.amazon

https://diplomawallah.in/
https://www.ibm.com/docs/en/hlf-support/1.0.0?topic=options-using-certificates-from-external-certificate-authority
https://dev.to/yongchanghe/hyperledger-fabric-architecture-456g
https://hyperledger-fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html

DIPLOMA WALLAH 5th Semester

15

Why: Non-deterministic chaincode causes endorsement mismatches, making

transactions invalid.

2. Statelessness

Principle: Chaincode should not maintain in-memory state between

invocations.hyperledger-fabric.readthedocs+1

Reason: Each chaincode invocation runs in isolated container; state must be

persisted to ledger.

Best practice: Always read from and write to world state via stub APIs.

3. Modularity

Design: Separate business logic into distinct functions.hyperledger-

fabric.readthedocs+1

Benefits:

• Easier testing and maintenance

• Clear endorsement policy mapping

• Reusable components

4. Error Handling

Requirement: Return appropriate success or error responses.hyperledger.github+2

Best practices:

• Validate all inputs

• Check for null/undefined values

• Return descriptive error messages

• Use shim.success() and shim.error() appropriatelyhyperledger.github

5. Security

Considerations:

• Validate caller identity

• Enforce access controls

• Sanitize inputs to prevent injection attacks

• Protect sensitive dataaws.amazon

Chaincode Structure and Components

Basic Chaincode Template (Node.js):

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html

DIPLOMA WALLAH 5th Semester

16

javascript

const shim = require('fabric-shim');

const util = require('util');

class MyChaincode {

 // Initialize chaincode (optional in Fabric 2.x)

 async Init(stub) {

 console.info('========= MyChaincode Init =========');

 // Initialize ledger with default data if needed

 await stub.putState('initialized', Buffer.from('true'));

 return shim.success();

 }

 // Main entry point for invocations

 async Invoke(stub) {

 console.info('========= MyChaincode Invoke =========');

 // Get function name and parameters

 let ret = stub.getFunctionAndParameters();

 console.info('Function: ' + ret.fcn);

 console.info('Parameters: ' + ret.params);

 // Route to appropriate function

 let method = this[ret.fcn];

 if (!method) {

 return shim.error('Function ' + ret.fcn + ' not found');

 }

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

17

 try {

 let response = await method(stub, ret.params);

 return shim.success(response);

 } catch (err) {

 return shim.error(err.message);

 }

 }

 // Business logic functions

 async createAsset(stub, args) {

 // Implementation

 }

 async readAsset(stub, args) {

 // Implementation

 }

 async updateAsset(stub, args) {

 // Implementation

 }

 async deleteAsset(stub, args) {

 // Implementation

 }

}

// Start chaincode

shim.start(new MyChaincode());

Key Chaincode APIs

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

18

1. State Management APIs

javascript

// Write data

await stub.putState(key, Buffer.from(JSON.stringify(value)));

// Read data

let valueBytes = await stub.getState(key);

if (!valueBytes || valueBytes.length === 0) {

 throw new Error('Asset not found');

}

let value = JSON.parse(valueBytes.toString());

// Delete data

await stub.delState(key);

2. Query APIs

javascript

// Range query (LevelDB and CouchDB)

let iterator = await stub.getStateByRange(startKey, endKey);

let results = [];

while (true) {

 let res = await iterator.next();

 if (res.value && res.value.value.toString()) {

 let record = {

 key: res.value.key,

 value: JSON.parse(res.value.value.toString())

 };

 results.push(record);

 }

 if (res.done) {

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

19

 await iterator.close();

 break;

 }

}

// Rich query (CouchDB only)

let queryString = {

 selector: {

 owner: 'Alice',

 value: { $gt: 100 }

 }

};

let iterator = await stub.getQueryResult(JSON.stringify(queryString));

3. Transaction Context APIs

javascript

// Get transaction ID

let txId = stub.getTxID();

// Get transaction timestamp

let timestamp = stub.getTxTimestamp();

// Get channel ID

let channelId = stub.getChannelID();

// Get creator (submitter) identity

let creator = stub.getCreator();

4. Access Control APIs

javascript

// Get client identity (requires fabric-shim-crypto)

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

20

const ClientIdentity = require('fabric-shim').ClientIdentity;

let cid = new ClientIdentity(stub);

// Get submitter's MSP ID

let mspId = cid.getMSPID();

// Get submitter's identity attributes

let attrValue = cid.getAttributeValue('role');

// Check if submitter has specific attribute

let hasAttr = cid.assertAttributeValue('role', 'admin');

5. Private Data APIs

javascript

// Write to private data collection

await stub.putPrivateData(collection, key, value);

// Read from private data collection

let value = await stub.getPrivateData(collection, key);

// Delete from private data collection

await stub.delPrivateData(collection, key);

6. Composite Key APIs

javascript

// Create composite key

let compositeKey = stub.createCompositeKey('assetType', [owner, assetId]);

await stub.putState(compositeKey, value);

// Query by partial composite key

let iterator = await stub.getStateByPartialCompositeKey('assetType', [owner]);

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

21

7. Event APIs

javascript

// Emit chaincode event

stub.setEvent('AssetCreated', Buffer.from(JSON.stringify({

 assetId: 'asset1',

 owner: 'Alice',

 timestamp: new Date().toISOString()

})));

Chaincode Implementation Example

Complete Asset Management Chaincode (Node.js):

javascript

const shim = require('fabric-shim');

class AssetChaincode {

 async Init(stub) {

 console.info('========= Asset Chaincode Init =========');

 return shim.success();

 }

 async Invoke(stub) {

 let ret = stub.getFunctionAndParameters();

 let method = this[ret.fcn];

 if (!method) {

 return shim.error('Function not found: ' + ret.fcn);

 }

 try {

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

22

 let response = await method(stub, ret.params);

 return shim.success(response);

 } catch (err) {

 console.error(err);

 return shim.error(err.message);

 }

 }

 // Create a new asset

 async createAsset(stub, args) {

 if (args.length !== 4) {

 throw new Error('Incorrect number of arguments. Expecting 4');

 }

 let assetId = args[0];

 let owner = args[1];

 let value = parseInt(args[2]);

 let description = args[3];

 // Check if asset already exists

 let assetBytes = await stub.getState(assetId);

 if (assetBytes && assetBytes.length > 0) {

 throw new Error('Asset already exists: ' + assetId);

 }

 // Create asset object

 let asset = {

 docType: 'asset',

 assetId: assetId,

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

23

 owner: owner,

 value: value,

 description: description,

 timestamp: stub.getTxTimestamp().seconds.low

 };

 // Save to ledger

 await stub.putState(assetId, Buffer.from(JSON.stringify(asset)));

 // Emit event

 stub.setEvent('AssetCreated', Buffer.from(JSON.stringify(asset)));

 console.info('Asset created: ' + assetId);

 return Buffer.from(JSON.stringify(asset));

 }

 // Read an asset

 async readAsset(stub, args) {

 if (args.length !== 1) {

 throw new Error('Incorrect number of arguments. Expecting assetId');

 }

 let assetId = args[0];

 let assetBytes = await stub.getState(assetId);

 if (!assetBytes || assetBytes.length === 0) {

 throw new Error('Asset not found: ' + assetId);

 }

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

24

 return assetBytes;

 }

 // Update asset owner

 async transferAsset(stub, args) {

 if (args.length !== 2) {

 throw new Error('Incorrect number of arguments. Expecting assetId and

newOwner');

 }

 let assetId = args[0];

 let newOwner = args[1];

 // Get existing asset

 let assetBytes = await stub.getState(assetId);

 if (!assetBytes || assetBytes.length === 0) {

 throw new Error('Asset not found: ' + assetId);

 }

 let asset = JSON.parse(assetBytes.toString());

 // Update owner

 asset.owner = newOwner;

 asset.timestamp = stub.getTxTimestamp().seconds.low;

 // Save updated asset

 await stub.putState(assetId, Buffer.from(JSON.stringify(asset)));

 // Emit event

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

25

 stub.setEvent('AssetTransferred', Buffer.from(JSON.stringify(asset)));

 console.info('Asset transferred: ' + assetId + ' to ' + newOwner);

 return Buffer.from(JSON.stringify(asset));

 }

 // Query assets by owner

 async queryAssetsByOwner(stub, args) {

 if (args.length !== 1) {

 throw new Error('Incorrect number of arguments. Expecting owner');

 }

 let owner = args[0];

 // Build query (CouchDB)

 let queryString = {

 selector: {

 docType: 'asset',

 owner: owner

 }

 };

 let iterator = await stub.getQueryResult(JSON.stringify(queryString));

 let results = [];

 while (true) {

 let res = await iterator.next();

 if (res.value && res.value.value.toString()) {

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

26

 let asset = JSON.parse(res.value.value.toString());

 results.push(asset);

 }

 if (res.done) {

 await iterator.close();

 break;

 }

 }

 return Buffer.from(JSON.stringify(results));

 }

 // Get asset history

 async getAssetHistory(stub, args) {

 if (args.length !== 1) {

 throw new Error('Incorrect number of arguments. Expecting assetId');

 }

 let assetId = args[0];

 let iterator = await stub.getHistoryForKey(assetId);

 let history = [];

 while (true) {

 let res = await iterator.next();

 if (res.value) {

 let record = {

 txId: res.value.tx_id,

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

27

 timestamp: res.value.timestamp,

 isDelete: res.value.is_delete,

 value: res.value.value.toString()

 };

 history.push(record);

 }

 if (res.done) {

 await iterator.close();

 break;

 }

 }

 return Buffer.from(JSON.stringify(history));

 }

}

shim.start(new AssetChaincode());

Chaincode Deployment Process

Step 1: Package Chaincode

bash

Navigate to chaincode directory

cd chaincode/asset-chaincode

Install dependencies

npm install

Package chaincode

peer lifecycle chaincode package asset.tar.gz \

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

28

 --path chaincode/asset-chaincode \

 --lang node \

 --label asset_1.0

Step 2: Install on Peers

bash

Install on Org1 peer

peer lifecycle chaincode install asset.tar.gz

Install on Org2 peer (repeat for all orgs)

peer lifecycle chaincode install asset.tar.gz

Step 3: Approve Chaincode Definition

bash

Each organization approves

peer lifecycle chaincode approveformyorg \

 --channelID mychannel \

 --name asset \

 --version 1.0 \

 --package-id asset_1.0:hash \

 --sequence 1 \

 --tls --cafile orderer-ca.pem

Step 4: Commit Chaincode

bash

After sufficient approvals, commit to channel

peer lifecycle chaincode commit \

 --channelID mychannel \

 --name asset \

 --version 1.0 \

 --sequence 1 \

 --tls --cafile orderer-ca.pem \

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

29

 --peerAddresses peer0.org1:7051 --tlsRootCertFiles org1-ca.pem \

 --peerAddresses peer0.org2:7051 --tlsRootCertFiles org2-ca.pem

Step 5: Invoke Chaincode

bash

Create asset

peer chaincode invoke \

 -o orderer:7050 \

 -C mychannel \

 -n asset \

 -c '{"function":"createAsset","Args":["asset1","Alice","1000","Laptop"]}' \

 --tls --cafile orderer-ca.pem

Query asset

peer chaincode query \

 -C mychannel \

 -n asset \

 -c '{"function":"readAsset","Args":["asset1"]}'

Chaincode Best Practices

1. Input Validation

• Always validate argument count and types

• Check for empty or null values

• Sanitize inputs to prevent injectionaws.amazon

2. Error Handling

• Use try-catch blocks

• Return descriptive error messages

• Log errors for debugginghyperledger.github+1

3. Access Control

• Verify caller identity before sensitive operations

• Use attribute-based access control (ABAC)

https://diplomawallah.in/
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/tutorial-using-chaincodeinterface.html

DIPLOMA WALLAH 5th Semester

30

• Implement role-based permissionsaws.amazon

4. Performance

• Minimize state reads/writes

• Use composite keys for efficient queries

• Leverage private data collections for sensitive informationaws.amazon

5. Testing

• Unit test individual functions

• Integration test on test network

• Simulate various scenarios and edge caseshyperledger-fabric.readthedocs+1

6. Documentation

• Comment complex logic

• Document function parameters and return values

• Maintain API documentationhyperledger-fabric.readthedocs

Hyperledger Fabric II: Beyond Chaincode - Fabric SDK and Front-End

While chaincode defines the business logic on the blockchain, applications need

interfaces to interact with the network. Hyperledger Fabric provides Software

Development Kits (SDKs) that enable developers to build client applications that

submit transactions, query ledgers, and listen for events.hyperledger.github+3

Hyperledger Fabric SDKs

Available SDKs:

1. Node.js SDK (Most mature and widely used)hyperledger.github+3

2. Java SDKhyperledger-fabric.readthedocs+1

3. Go SDKhyperledger-fabric.readthedocs+1

4. Python SDK (Under development)oak-tree+1

Note: As of Fabric v2.5, traditional SDKs are deprecated in favor of the Fabric

Gateway client API, which provides a simpler programming model.github+2

Node.js SDK (fabric-network)

Installation:

bash

https://diplomawallah.in/
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger.github.io/fabric-sdk-node/main/index.html
https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric-sdks.html
https://oak-tree.tech/blog/hyperledger-tools-deployment
https://github.com/hyperledger/fabric-sdk-node

DIPLOMA WALLAH 5th Semester

31

npm install fabric-network

Key packages:

• fabric-network: High-level API for application development

• fabric-common: Low-level API for fine-grained interactions

• fabric-ca-client: Client for Fabric Certificate Authority

• fabric-protos: Protocol buffers for gRPC communicationhyperledger.github+1

SDK Components and APIs

1. Connection Profile

Definition: JSON or YAML file describing network topology, including peers,

orderers, CAs, and channels.stackoverflow+2

Example (connection-profile.json):

json

{

 "name": "test-network",

 "version": "1.0.0",

 "client": {

 "organization": "Org1",

 "connection": {

 "timeout": {

 "peer": { "endorser": "300" },

 "orderer": "300"

 }

 }

 },

 "organizations": {

 "Org1": {

 "mspid": "Org1MSP",

 "peers": ["peer0.org1.example.com"],

 "certificateAuthorities": ["ca.org1.example.com"]

https://diplomawallah.in/
https://hyperledger.github.io/fabric-sdk-node/
https://stackoverflow.com/questions/59340169/hyperledger-fabric-front-end-creation

DIPLOMA WALLAH 5th Semester

32

 }

 },

 "peers": {

 "peer0.org1.example.com": {

 "url": "grpcs://localhost:7051",

 "tlsCACerts": {

 "path":

"crypto/peerOrganizations/org1.example.com/tlsca/tlsca.org1.example.com-

cert.pem"

 }

 }

 },

 "orderers": {

 "orderer.example.com": {

 "url": "grpcs://localhost:7050",

 "tlsCACerts": {

 "path":

"crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/

tlscacerts/tlsca.example.com-cert.pem"

 }

 }

 },

 "certificateAuthorities": {

 "ca.org1.example.com": {

 "url": "https://localhost:7054",

 "caName": "ca-org1"

 }

 }

}

2. Wallet

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

33

Purpose: Securely store user identities (certificates and private

keys).stackoverflow+2

Types:

• File system wallet

• In-memory wallet (for testing)

• CouchDB wallet

• Redis wallet (for distributed applications)hyperledger.github

Example:

javascript

const { Wallets } = require('fabric-network');

// Create file system wallet

const walletPath = path.join(__dirname, 'wallet');

const wallet = await Wallets.newFileSystemWallet(walletPath);

// Add identity to wallet

const identity = {

 credentials: {

 certificate: certPEM,

 privateKey: keyPEM

 },

 mspId: 'Org1MSP',

 type: 'X.509'

};

await wallet.put('user1', identity);

// Retrieve identity from wallet

const userIdentity = await wallet.get('user1');

3. Gateway

https://diplomawallah.in/
https://stackoverflow.com/questions/53994471/hyperledger-fabric-how-to-make-frontend
https://hyperledger.github.io/fabric-sdk-node/

DIPLOMA WALLAH 5th Semester

34

Purpose: Main entry point for connecting to the Fabric network and accessing

channels.hyperledger-fabric.readthedocs+2

Workflow:

1. Load connection profile

2. Connect to gateway using identity from wallet

3. Access channel

4. Get contract (chaincode)

5. Submit transactions or queries

6. Disconnectdev+2

Example:

javascript

const { Gateway, Wallets } = require('fabric-network');

const fs = require('fs');

const path = require('path');

async function main() {

 try {

 // Load connection profile

 const ccpPath = path.resolve(__dirname, 'connection-profile.json');

 const ccp = JSON.parse(fs.readFileSync(ccpPath, 'utf8'));

 // Create wallet

 const walletPath = path.join(__dirname, 'wallet');

 const wallet = await Wallets.newFileSystemWallet(walletPath);

 // Check if identity exists in wallet

 const identity = await wallet.get('user1');

 if (!identity) {

 console.log('Identity not found in wallet');

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://dev.to/yongchanghe/hyperledger-fabric-architecture-456g

DIPLOMA WALLAH 5th Semester

35

 return;

 }

 // Create gateway instance

 const gateway = new Gateway();

 // Connect to gateway

 await gateway.connect(ccp, {

 wallet: wallet,

 identity: 'user1',

 discovery: { enabled: true, asLocalhost: true }

 });

 // Get network (channel)

 const network = await gateway.getNetwork('mychannel');

 // Get contract (chaincode)

 const contract = network.getContract('asset');

 // Submit transaction

 console.log('Submit transaction: createAsset');

 await contract.submitTransaction('createAsset', 'asset1', 'Alice', '1000', 'Laptop');

 console.log('Transaction submitted successfully');

 // Query ledger

 console.log('Query: readAsset');

 const result = await contract.evaluateTransaction('readAsset', 'asset1');

 console.log('Query result:', result.toString());

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

36

 // Disconnect

 await gateway.disconnect();

 } catch (error) {

 console.error('Error:', error);

 process.exit(1);

 }

}

main();

4. Contract (Chaincode Interface)

Purpose: Represents a deployed chaincode, providing methods to submit

transactions and queries.hyperledger-fabric.readthedocs+2

Key methods:

javascript

// Submit transaction (updates ledger)

await contract.submitTransaction('functionName', 'arg1', 'arg2', ...);

// Evaluate transaction (query, no ledger update)

const result = await contract.evaluateTransaction('functionName', 'arg1', 'arg2', ...);

// Create transaction object for finer control

const transaction = contract.createTransaction('functionName');

transaction.setEndorsingOrganizations('Org1MSP', 'Org2MSP');

await transaction.submit('arg1', 'arg2');

5. Event Listeners

Purpose: Listen for chaincode events, block events, or transaction events.dev+1

Example:

javascript

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://dev.to/yongchanghe/hyperledger-fabric-architecture-456g

DIPLOMA WALLAH 5th Semester

37

// Listen for chaincode events

const listener = async (event) => {

 console.log('Event received:', event.eventName);

 console.log('Payload:', event.payload.toString());

};

await contract.addContractListener(listener);

// Listen for block events

const blockListener = async (event) => {

 console.log('Block number:', event.blockNumber);

 console.log('Transactions:', event.blockData.data.data.length);

};

await network.addBlockListener(blockListener);

// Remove listeners

contract.removeContractListener(listener);

Building a Front-End Application

Front-end applications interact with Hyperledger Fabric through a backend REST

API built with the Fabric SDK.stackoverflow+2

Architecture:

text

[Front-End (React/Angular/Vue)]

 ↓ HTTP/REST

[Backend API Server (Express.js + Fabric SDK)]

 ↓ gRPC

[Hyperledger Fabric Network]

Backend REST API Example (Node.js + Express)

https://diplomawallah.in/
https://stackoverflow.com/questions/59340169/hyperledger-fabric-front-end-creation

DIPLOMA WALLAH 5th Semester

38

Project structure:

text

application/

├── server.js # Express server

├── fabric/

│ ├── network.js # Fabric network interaction

│ ├── wallet/ # User identities

│ └── connection-profile.json

├── routes/

│ └── asset.js # API routes

└── package.json

server.js:

javascript

const express = require('express');

const bodyParser = require('body-parser');

const cors = require('cors');

const assetRoutes = require('./routes/asset');

const app = express();

const PORT = 3000;

// Middleware

app.use(cors());

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({ extended: true }));

// Routes

app.use('/api/assets', assetRoutes);

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

39

// Health check

app.get('/health', (req, res) => {

 res.json({ status: 'OK' });

});

// Start server

app.listen(PORT, () => {

 console.log(`Server running on port ${PORT}`);

});

fabric/network.js:

javascript

const { Gateway, Wallets } = require('fabric-network');

const path = require('path');

const fs = require('fs');

class FabricNetwork {

 constructor() {

 this.ccpPath = path.resolve(__dirname, 'connection-profile.json');

 this.walletPath = path.join(__dirname, 'wallet');

 }

 async connectToNetwork(userId) {

 try {

 // Load connection profile

 const ccp = JSON.parse(fs.readFileSync(this.ccpPath, 'utf8'));

 // Load wallet

 const wallet = await Wallets.newFileSystemWallet(this.walletPath);

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

40

 // Check identity

 const identity = await wallet.get(userId);

 if (!identity) {

 throw new Error(`Identity ${userId} not found in wallet`);

 }

 // Connect to gateway

 const gateway = new Gateway();

 await gateway.connect(ccp, {

 wallet: wallet,

 identity: userId,

 discovery: { enabled: true, asLocalhost: true }

 });

 // Get network and contract

 const network = await gateway.getNetwork('mychannel');

 const contract = network.getContract('asset');

 return { gateway, network, contract };

 } catch (error) {

 console.error('Failed to connect to network:', error);

 throw error;

 }

 }

 async disconnectFromNetwork(gateway) {

 if (gateway) {

 await gateway.disconnect();

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

41

 }

 }

}

module.exports = FabricNetwork;

routes/asset.js:

javascript

const express = require('express');

const router = express.Router();

const FabricNetwork = require('../fabric/network');

const fabricNetwork = new FabricNetwork();

// Create asset

router.post('/', async (req, res) => {

 try {

 const { assetId, owner, value, description } = req.body;

 const userId = req.headers['user-id'] || 'user1';

 const { gateway, contract } = await fabricNetwork.connectToNetwork(userId);

 await contract.submitTransaction('createAsset', assetId, owner, value,

description);

 await fabricNetwork.disconnectFromNetwork(gateway);

 res.json({

 success: true,

 message: 'Asset created successfully',

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

42

 assetId: assetId

 });

 } catch (error) {

 console.error('Error creating asset:', error);

 res.status(500).json({

 success: false,

 message: error.message

 });

 }

});

// Get asset

router.get('/:assetId', async (req, res) => {

 try {

 const { assetId } = req.params;

 const userId = req.headers['user-id'] || 'user1';

 const { gateway, contract } = await fabricNetwork.connectToNetwork(userId);

 const result = await contract.evaluateTransaction('readAsset', assetId);

 await fabricNetwork.disconnectFromNetwork(gateway);

 res.json({

 success: true,

 data: JSON.parse(result.toString())

 });

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

43

 } catch (error) {

 console.error('Error reading asset:', error);

 res.status(500).json({

 success: false,

 message: error.message

 });

 }

});

// Transfer asset

router.put('/:assetId/transfer', async (req, res) => {

 try {

 const { assetId } = req.params;

 const { newOwner } = req.body;

 const userId = req.headers['user-id'] || 'user1';

 const { gateway, contract } = await fabricNetwork.connectToNetwork(userId);

 await contract.submitTransaction('transferAsset', assetId, newOwner);

 await fabricNetwork.disconnectFromNetwork(gateway);

 res.json({

 success: true,

 message: 'Asset transferred successfully'

 });

 } catch (error) {

 console.error('Error transferring asset:', error);

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

44

 res.status(500).json({

 success: false,

 message: error.message

 });

 }

});

// Query assets by owner

router.get('/owner/:owner', async (req, res) => {

 try {

 const { owner } = req.params;

 const userId = req.headers['user-id'] || 'user1';

 const { gateway, contract } = await fabricNetwork.connectToNetwork(userId);

 const result = await contract.evaluateTransaction('queryAssetsByOwner',

owner);

 await fabricNetwork.disconnectFromNetwork(gateway);

 res.json({

 success: true,

 data: JSON.parse(result.toString())

 });

 } catch (error) {

 console.error('Error querying assets:', error);

 res.status(500).json({

 success: false,

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

45

 message: error.message

 });

 }

});

module.exports = router;

Front-End Example (React)

Component to interact with REST API:

javascript

import React, { useState, useEffect } from 'react';

import axios from 'axios';

const API_BASE = 'http://localhost:3000/api';

function AssetManager() {

 const [assets, setAssets] = useState([]);

 const [assetId, setAssetId] = useState('');

 const [owner, setOwner] = useState('');

 const [value, setValue] = useState('');

 const [description, setDescription] = useState('');

 // Fetch assets

 const fetchAssets = async (ownerName) => {

 try {

 const response = await axios.get(

 `${API_BASE}/assets/owner/${ownerName}`,

 { headers: { 'user-id': 'user1' } }

);

 setAssets(response.data.data);

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

46

 } catch (error) {

 console.error('Error fetching assets:', error);

 }

 };

 // Create asset

 const createAsset = async (e) => {

 e.preventDefault();

 try {

 const response = await axios.post(

 `${API_BASE}/assets`,

 { assetId, owner, value, description },

 { headers: { 'user-id': 'user1' } }

);

 alert('Asset created: ' + response.data.assetId);

 // Clear form

 setAssetId('');

 setOwner('');

 setValue('');

 setDescription('');

 } catch (error) {

 console.error('Error creating asset:', error);

 alert('Error: ' + error.response.data.message);

 }

 };

 return (

 <div>

 <h1>Asset Management</h1>

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

47

 <h2>Create Asset</h2>

 <form onSubmit={createAsset}>

 <input placeholder="Asset ID" value={assetId} onChange={(e) =>

setAssetId(e.target.value)} required />

 <input placeholder="Owner" value={owner} onChange={(e) =>

setOwner(e.target.value)} required />

 <input placeholder="Value" value={value} onChange={(e) =>

setValue(e.target.value)} required />

 <input placeholder="Description" value={description} onChange={(e) =>

setDescription(e.target.value)} required />

 <button type="submit">Create</button>

 </form>

 <h2>Query Assets</h2>

 <button onClick={() => fetchAssets('Alice')}>Show Alice's Assets</button>

 {assets.map((asset, idx) => (

 <li key={idx}>

 {asset.assetId}: {asset.description} (Owner: {asset.owner}, Value:

{asset.value})

))}

 </div>

);

}

export default AssetManager;

SDK Best Practices

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

48

1. Connection Management

• Reuse gateway connections when possible

• Close gateway connections after use

• Implement connection pooling for high-traffic applicationshyperledger-

fabric.readthedocs+1

2. Error Handling

• Wrap SDK calls in try-catch blocks

• Handle network errors gracefully

• Provide meaningful error messages to usershyperledger.github+1

3. Identity Management

• Store credentials securely

• Implement proper authentication

• Use role-based access controlhyperledger.github

4. Performance

• Use evaluateTransaction for queries (doesn't invoke consensus)

• Use submitTransaction only for ledger updates

• Batch transactions when possiblehyperledger-fabric.readthedocs+1

5. Event Handling

• Always remove event listeners when done

• Handle listener errors appropriately

• Consider event replay for missed eventshyperledger.github

Hyperledger Composer Tool

Note: As of August 29, 2019, Hyperledger Composer has been officially deprecated

and is no longer actively maintained.stackoverflow+4

Deprecation reasons:

1. Dual programming models: Composer created confusion by offering a

separate programming model from native Fabric chaincode.stackoverflow+1

2. Feature lag: Difficult to keep pace with latest Fabric features (e.g., private data

collections).stackoverflow

https://diplomawallah.in/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/developing_applications.html
https://hyperledger.github.io/fabric-sdk-node/
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer

DIPLOMA WALLAH 5th Semester

49

3. Limited adoption: Most users reverted to native Fabric development after

POC stage.stackoverflow+1

Recommendation: Use Hyperledger Fabric v1.4+ native development instead,

which offers significant improvements to the developer experience.github+3

What Was Hyperledger Composer?

Definition: Hyperledger Composer was an application development framework

designed to simplify and accelerate the creation of Hyperledger Fabric blockchain

applications.github+3

Target users: Business analysts and developers without deep blockchain

expertise.geeksforgeeks+1

Key Concepts in Hyperledger Composer

1. Business Network Archive (BNA)

• Central artifact containing all business network components

• Packaged as .bna file

• Included model files, transaction logic, access control rulesinvestopedia+1

2. Assets

• Resources that can be exchanged (e.g., properties, vehicles)

• Defined with unique identifiers and attributes

• Could be tangible or intangiblegeeksforgeeks

3. Participants

• Members of the business network (e.g., buyers, sellers)

• Had unique identities

• Could own assets and participate in transactionsgeeksforgeeks

4. Transactions

• Operations that change asset states

• Defined business logic for asset exchanges

• Automatically recorded on blockchaingeeksforgeeks

5. Access Control

• Rules defining who can do what

• Specified in Access Control Language (ACL)

• Enforced by Composer runtimegeeksforgeeks

https://diplomawallah.in/
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://github.com/hyperledger-archives/composer-tools
https://github.com/hyperledger-archives/composer
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.investopedia.com/terms/h/hyperledger-composer.asp
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/

DIPLOMA WALLAH 5th Semester

50

6. Queries

• Predefined or ad-hoc data retrieval

• Expressed in Composer Query Language

• Returned filtered resultsgeeksforgeeks

7. Events

• Notifications emitted by transactions

• Could trigger external system actions

• Subscribed to by client applicationsgeeksforgeeks

Composer Architecture Components

1. Modeling Language

• Domain-specific language for defining business networks

• .cto files (CTO = Composer Type Object)

• Declarative syntaxinvestopedia+1

Example:

text

namespace org.example

asset Car identified by vin {

 o String vin

 o String make

 o String model

 --> Person owner

}

participant Person identified by email {

 o String email

 o String firstName

 o String lastName

}

https://diplomawallah.in/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.investopedia.com/terms/h/hyperledger-composer.asp

DIPLOMA WALLAH 5th Semester

51

transaction TransferCar {

 --> Car car

 --> Person newOwner

}

2. Transaction Processor Functions

• JavaScript functions implementing transaction logic

• Automatically invoked when transactions submittedgeeksforgeeks

3. Access Control Language

• Declarative rules in .acl files

• Specified permissions for participantsgeeksforgeeks

4. Composer Playground

• Web-based tool for developing and testing business networks

• No installation required

• Rapid prototyping environmentinvestopedia+1

5. Composer REST Server

• Automatically generated REST API for business network

• Swagger-documented endpoints

• Enabled rapid front-end developmentinvestopedia+1

6. Composer CLI

• Command-line tools for managing business networks

• Deploy, update, test networksgeeksforgeeks

Why Composer Was Deprecated

Despite initial popularity for rapid prototyping, Composer faced fundamental

limitations:stackoverflow+1

1. Abstraction Cost

• Abstracted away Fabric concepts, creating learning gap

• Users struggled to transition from Composer to production-grade

Fabricstackoverflow+1

2. Maintenance Burden

https://diplomawallah.in/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://www.investopedia.com/terms/h/hyperledger-composer.asp
https://www.investopedia.com/terms/h/hyperledger-composer.asp
https://www.geeksforgeeks.org/ethical-hacking/hyperledger-composer-architecture/
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric

DIPLOMA WALLAH 5th Semester

52

• Required constant updates to match Fabric evolution

• Difficult to expose new Fabric features through Composer

abstractionstackoverflow

3. Production Concerns

• Not suitable for production deployments

• Lacked full feature set of native Fabricstackoverflow+1

• Performance overhead from abstraction layerstackoverflow

4. Governance Model Mismatch

• Composer's centralized governance model didn't align with Fabric 2.x's

decentralized chaincode lifecyclestackoverflow

Migration Path

Organizations using Composer should migrate to native Hyperledger Fabric

development:github+2

Recommended approach:

1. Understand native Fabric: Learn chaincode development in Go, Node.js, or

Javahyperledger-fabric.readthedocs+2

2. Rewrite business logic: Convert Composer transaction processors to

chaincode functionshyperledger-fabric.readthedocs

3. Implement access control: Use Fabric's built-in MSP and attribute-based

access controlhyperledger-fabric.readthedocs+1

4. Build client applications: Use Fabric SDKs directlygithub+2

5. Test thoroughly: Validate migrated functionality on test

networkhyperledger-fabric.readthedocs+1

Resources for migration:

• Official Fabric documentation

• Fabric samples repository

• Commercial paper tutorial (good starting point)hyperledger-

fabric.readthedocs+1

Summary of Key Concepts

This unit covered the architecture and development aspects of Hyperledger Fabric:

https://diplomawallah.in/
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://stackoverflow.com/questions/45505333/difference-between-hyperledger-composer-and-hyperledger-fabric
https://stackoverflow.com/questions/57423380/what-are-reasons-for-the-deprecation-of-hyperledger-composer
https://github.com/hyperledger-archives/composer-tools
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html
https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://github.com/hyperledger/fabric-sdk-node
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html
https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html

DIPLOMA WALLAH 5th Semester

53

1. Decomposing the Consensus Process: Examined how consensus mechanisms can

be broken into distinct phases (transaction proposal, broadcast, validation, voting,

finalization, propagation) and components (election, proposal/acceptance,

agreement, commitment). Explored Fabric's unique execute-order-validate model.

2. Hyperledger Fabric Components: Detailed study of seven core components:

• Peers: Host ledgers and chaincode; endorsing, committing, anchor, and leader

types

• Orderers: Order transactions and create blocks using Raft consensus

• Chaincode: Smart contracts written in Go, Node.js, or Java

• MSP: Manages identities and access control via X.509 certificates

• Channels: Enable private transactions with separate ledgers

• Ledger: Consists of blockchain (transaction log) and world state (current

values)

• Certificate Authority: Issues and manages digital certificates

3. Chaincode Design and Implementation: Covered design principles

(determinism, statelessness, modularity, error handling, security), key APIs (state

management, queries, transaction context, access control, private data, events),

complete implementation examples, and deployment process.

4. Fabric SDK and Front-End Development: Explored Node.js SDK (fabric-network

package), key components (connection profile, wallet, gateway, contract), event

listeners, building backend REST APIs with Express.js, and integrating front-end

applications (React/Angular/Vue) with blockchain backend.

5. Hyperledger Composer Tool: Historical perspective on the deprecated Composer

framework, its key concepts (assets, participants, transactions, BNA), architecture

components, reasons for deprecation, and migration path to native Fabric

development.

Practice Questions

Question 1: Explain Hyperledger Fabric's execute-order-validate consensus model

and compare it to the traditional order-execute model used by Bitcoin and Ethereum.

Discuss the advantages of Fabric's approach for enterprise blockchain applications.

Question 2: Describe the complete transaction flow in Hyperledger Fabric from

client proposal to ledger update. Include the roles of endorsing peers, ordering

service, and committing peers, and explain how the Membership Service Provider

(MSP) ensures security throughout the process.

https://diplomawallah.in/

DIPLOMA WALLAH 5th Semester

54

Diploma Wallah

Made with by Sangam

https://diplomawallah.in/

