



# Strength of Materials

PYQ

<https://diplomawallah.in/>

**Jharkhand University of Technology, Ranchi**

**3rd Semester Diploma Engineering Examination, December 2019**

**Subject : Strength of Material**

**Subject Code : MEC-306**

**Time : 3 Hours**

**Full Marks : 80**

**Pass Marks : 26**

*Answer in your own words.*

*Answer five questions in which Question No. 1 is compulsory  
and answer any four from rest questions.*

*All questions carry equal marks.*

**1. Choose the correct answer:**

**$2 \times 8 = 16$**

- (i) Which of the following is the statically determinate beam?
  - (a) cantilevers
  - (b) simply supported beam
  - (c) overhanging beam
  - (d) All of these
  
- (ii) In a cantilever with uniformly distributed load the shearing force follow a
  - (a) linear law
  - (b) parabolic law
  - (c) either of the above
  - (d) None of these
  
- (iii) If the close-coiled helical spring is subjected to load  $w$  and the deflection produced is  $\delta$ , then stiffness of the spring is given by
  - (a)  $w/\delta$
  - (b)  $w \cdot \delta$
  - (c)  $\delta/w$
  - (d)  $w^2 \cdot \delta$
  
- (iv) \_\_\_\_\_ are called cantilever laminated springs.
  - (a) semi-elliptical spring
  - (b) quarter elliptical springs
  - (c) Both (a) and (b)
  - (d) None of these
  
- (v) A member of structure or bar which carries an axial compressive load is called
  - (a) Strut
  - (b) Tie
  - (c) Shaft
  - (d) None of these
  
- (vi) The ratio between buckling load and safe load is known as
  - (a) slenderness ratio
  - (b) buckling factor
  - (c) factor of safety
  - (d) None of these

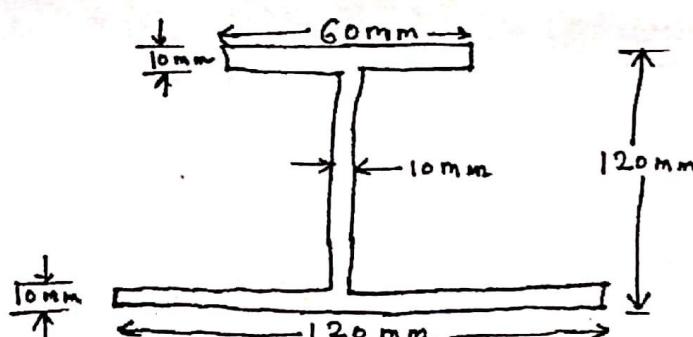
(vii) Euler's formula is applicable to

- (a) short columns
- (b) medium columns
- (c) long columns
- (d) None of these

(viii) The amount of deflection of a beam subjected to same type of loading depends upon

- (a) cross-section
- (b) bending moment
- (c) either (a) or (b)
- (d) Both (a) and (b)

2. (a) Define centre of gravity. 6


(b) A cantilever 3 m long is loaded with a uniformly distributed load of 15 KN/m over a length of 2 m from the fixed end. Determine the slope and deflection at the free end of the cantilever. 10

Take  $E = 2.1 \times 10^8 \text{ kN/m}^2$

$I = 0.000095 \text{ m}^4$

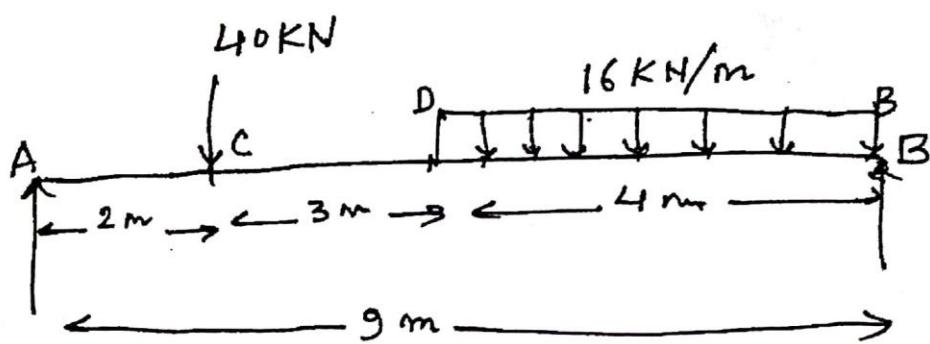
3. (a) Define Hook's law. 6

(b) Find the moment of inertia about the horizontal axis through the c.g. of the section shown in fig. 10

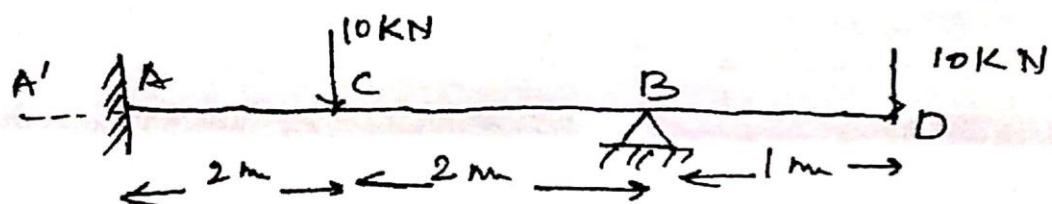


4. (a) Explain Stress and Strain. 6

(b) A symmetrical section 200 mm deep has a moment of inertia of  $2.26 \times 10^5 \text{ m}^4$  about its neutral axis. Determine the longest span over which, when simply supported, the beam would carry a uniformly distributed load of 4 kN/m run without the stress due to bending exceeding 125 MN/M<sup>2</sup>. 10


5. (a) Define classification of Beam. 6

(b) A square steel rod 20 mm  $\times$  20 mm in section to carry an axial load of 100 kN. Calculate the shortening in a length of 50 mm,  $E = 2.14 \times 10^8 \text{ kN/m}^2$ . 10


( 3 )

306

6. A simply supported beam of 9 m span is loaded as in fig. Draw the 13 MD and SFD indicating principle values.



7. Find the prop reaction and fixing moment for a propped cantilever loaded as shown in fig.





